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Abstract

Decision Trees (DTs) are commonly used for many machine
learning tasks due to their high degree of interpretability.
However, learning a DT from data is a difficult optimization
problem, as it is non-convex and non-differentiable. There-
fore, common approaches learn DTs using a greedy growth
algorithm that minimizes the impurity locally at each inter-
nal node. Unfortunately, this greedy procedure can lead to
inaccurate trees. In this paper, we present a novel approach
for learning hard, axis-aligned DTs with gradient descent.
The proposed method uses backpropagation with a straight-
through operator on a dense DT representation, to jointly op-
timize all tree parameters. Our approach outperforms existing
methods on binary classification benchmarks and achieves
competitive results for multi-class tasks. The method is avail-
able under: https://github.com/s-marton/GradTree.

1 Introduction
Decision trees (DTs) are some of the most popular machine
learning models and are still frequently used today. In partic-
ular, with the growing interest in explainable artificial intel-
ligence (XAI), DTs have regained popularity due to their in-
terpretability. However, learning a DT is a difficult optimiza-
tion problem, since it is non-convex and non-differentiable.
Therefore, the prevailing approach to learn a DT is a greedy
procedure that minimizes the impurity at each internal node.
The algorithms still in use today, such as CART (Breiman
et al. 1984) and C4.5 (Quinlan 1993), were developed in the
1980s and have remained largely unchanged since then. Un-
fortunately, greedy algorithms optimize the objective locally
at each internal node which constrains the search space, and
potentially leads to inaccurate trees, as illustrated below:

Example 1 The Echocardiogram dataset (Dua and Graff
2017) deals with predicting one-year survival of patients af-
ter a heart attack based on tabular data from an echocardio-
gram. Figure 1 shows two DTs. The tree on the left is learned
by a greedy algorithm (CART) while the one on the right is
learned with our gradient-based approach. We can observe
that the greedy procedure leads to a tree with a significantly
lower performance. Splitting on the wall-motion-score is the
locally optimal split (see Figure 1a), but globally, it is ben-
eficial to split based on the wall-motion-score with different
values conditioned on the pericardial-effusion in the second
level (Figure 1b).

In this paper, we propose a novel approach for learn-
ing hard, axis-aligned DTs based on a joint optimization of
all tree parameters using gradient descent, which we call
Gradient-Based Decision Tree (GradTree). Similar to op-
timization in neural networks, GradTree yields a desirable
local optimum of parameters that generalizes well to test
data. Using a gradient-based optimization, GradTree can
overcome the limitations of greedy approaches, which are
constrained by sequentially selecting optimal splits, as illus-
trated in Figure 1. At the same time, GradTree can converge
to a local optimum that offers good generalization, and thus
provides an advantage over alternative non-greedy methods
like optimal DTs (Demirović et al. 2022; Aglin, Nijssen,
and Schaus 2020), which often suffer from severe overfit-
ting (Zantedeschi, Kusner, and Niculae 2021).

Specifically, our contributions are:
• We introduce a dense DT representation that enables a

joint, gradient-based optimization of all tree parameters
(Section 3.2).

• We present a procedure to deal with the non-
differentiable nature of DTs using backpropagation with
a straight-through (ST) operator (Section 3.3).

• We propose a novel tree routing that allows an efficient,
parallel optimization of all tree parameters with gradient
descent (Section 3.4).

We empirically evaluate GradTree on a large number of
real-world datasets (Section 4). GradTree outperforms ex-
isting methods for binary classification tasks and achieves
competitive results on multi-class datasets. On several
benchmark datasets, the performance difference between
GradTree and other methods is substantial. The gradient-
based optimization of GradTree also provides more flexi-
bility by allowing split adjustments during training and easy
integration of custom loss functions.

2 Related Work
Greedy DT Algorithms The most prominent DT learn-
ing algorithms still frequently used, namely CART (Breiman
et al. 1984) and C4.5 (Quinlan 1993), date back to the 1980s.
Both follow a greedy procedure to learn a DT. Since then,
many variations to those algorithms have been proposed, for
instance C5.0 (Kuhn, Johnson et al. 2013) and GUIDE (Loh
2002, 2009). However, until today, none of these algorithms
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Figure 1: Greedy vs. Gradient-Based DT. Two DTs trained on the Echocardiogram dataset. The CART DT (left) makes only
locally optimal splits, while GradTree (right) jointly optimizes all parameters, leading to significantly better performance.

was able to consistently outperform CART and C4.5 as
shown for instance by Zharmagambetov et al. (2021).

Optimal DTs To overcome the issues of a greedy DT in-
duction, many researchers focused on finding an efficient al-
ternative. Optimal DTs aim to optimize an objective (e.g.,
the purity) through an approximate brute force search to find
a globally optimal tree with a certain specification (Zhar-
magambetov et al. 2021). Therefore, they most commonly
use mixed integer optimization (Bertsimas and Dunn 2017)
or a branch-and-bound algorithm to remove irrelevant parts
from the search space (Aglin, Nijssen, and Schaus 2020; Lin
et al. 2020). MurTree (Demirović et al. 2022) further uses
dynamic programming, which reduces the runtime signif-
icantly. However, most state-of-the-art approaches still re-
quire binary data and therefore a discretization of continu-
ous features (Bertsimas and Dunn 2017; Aglin, Nijssen, and
Schaus 2020; Demirović et al. 2022), which can lead to in-
formation loss. An exception is the approach by Mazumder,
Meng, and Wang (2022), which can handle continuous fea-
tures out-of-the-box. However, their method is optimized for
very sparse trees and limited to a maximum depth of 3.

While optimal DTs search for a global optimum,
GradTree does not necessarily pursue this. Instead, like op-
timization in neural networks, it aims for a local optimum
that offers good generalization to test data.

We further want to emphasize that the local optima that
can be reached by GradTree have a significant advantage
over the local optimum of a greedy approach: While the lo-
cal optimum of greedy approaches is constrained by sequen-
tially selecting the optimal split at each node, GradTree over-
comes this limitation by optimizing all parameters jointly.

Genetic DTs Another way to learn DTs in a non-greedy
fashion is by using evolutionary algorithms. Evolutionary
algorithms perform a robust global search in the space of
candidate solutions based on the concept of survival of the
fittest (Barros et al. 2011). This usually results in smaller
trees and a better identification of feature interactions com-
pared to a greedy, local search (Freitas 2002).

Oblique DTs In contrast to vanilla DTs that make a hard
decision at each internal node, many hierarchical mixture
of expert models (Jordan and Jacobs 1994) have been pro-
posed. They usually make soft splits, where each branch is
associated with a probability (Irsoy, Yıldız, and Alpaydın

2012; Frosst and Hinton 2017). Further, the models do not
comprise univariate, axis-aligned splits, but are oblique with
respect to the axes. These adjustments to the tree architec-
ture allow for the application of further optimization algo-
rithms, including gradient descent. Blanquero et al. (2020)
aim to increase the interpretability of oblique trees by opti-
mizing for sparsity, using fewer variables at each split and
simultaneously fewer splits in the whole tree. Tanno et al.
(2019) combine the benefits of neural networks and DTs,
using so-called adaptive neural trees (ANTs). They employ
a stochastic routing based on a Bernoulli distribution and
utilize non-linear transformer modules at the edges, making
the resulting trees soft and oblique. Xu et al. (2022) propose
One-Stage Tree as a novel method for learning soft DTs,
including the tree structure, while maintaining discretiza-
tion during training, which results in a higher interpretabil-
ity compared to existing soft DTs. However, in contrast to
GradTree, the routing is instance-wise, which significantly
hampers a global interpretation of the model. Norouzi et al.
(2015) proposed an approach to overcome the need for soft
decisions to apply gradient-based algorithms by minimizing
a convex-concave upper bound on the tree’s empirical loss.
While this allows the use of hard splits, the approach is still
limited to oblique trees. Zantedeschi, Kusner, and Niculae
(2021) use argmin differentiation to simultaneously learn all
tree parameters by relaxing a mixed-integer program for dis-
crete parameters to allow for gradient-based optimization.
This allows hard splits, but in contrast to GradTree, they still
require a differentiable split function (e.g., a linear function
which results in oblique trees). Similarly, Karthikeyan et al.
(2022) developed a gradient-based approach to learn hard
DTs. Like to GradTree, they use an ST operator to handle
the hard step functions. While their formulation is limited to
oblique trees, our approach permits axis-aligned DTs.

In summary, unlike oblique DTs, GradTree allows hard,
axis-aligned splits that consider only a single feature at each
split, providing significantly higher interpretability, espe-
cially at the split-level. This is supported by Molnar (2020)
where the authors argue that humans cannot comprehend ex-
planations involving more than three dimensions at once.

Oblivious DT Ensembles Popov, Morozov, and Babenko
(2019) proposed an oblivious tree ensemble for deep learn-
ing. Oblivious DTs use the same splitting feature and thresh-
old in all internal nodes of the same depth, making them



only suitable as weak learners in an ensemble. They use
an entmax transformation of the choice function and a two-
class entmax as split function. This results in oblique and
soft trees, while GradTree is axis-aligned and hard. Chang,
Caruana, and Goldenberg (2021) proposed a temperature an-
nealing procedure to gradually turn the input to an entmax
function one-hot, which can enforce axis-aligned trees. In
contrast, our approach employs an ST operator immediately
following an entmax transformation to yield a one-hot en-
coded vector. Our experiments substantiate that our method
achieves superior results in the context of individual DTs.

Axis-Aligned DT Ensembles While existing methods for
learning tree ensembles often require structural changes,
such as relaxing axis-aligned splits to oblivious ones, Bruch,
Pfeifer, and Guillame-Bert (2020) use input perturbation as
a purely analytical procedure to approximate the gradients
of the ensemble. As a result, similar to GradTree, it is pos-
sible to learn and fine-tune an axis-aligned DT ensemble.
Although their method makes this feasible, the authors de-
cided not to learn the split index but only the split threshold,
in order to avoid potential changes to the model’s structure.
In contrast, GradTree uses a dense representation that allows
for the efficient learning of both the split threshold and the
feature index to split on. This is particularly important when
aiming for an interpretable DT model, as opposed to a large
ensemble, since the number of possible splits is limited.

Deep Neural Decision Trees (DNDTs) Yang, Morillo,
and Hospedales (2018) propose DNDTs that realize tree
models as neural networks, utilizing a soft binning func-
tion for splitting. Therefore, the resulting trees are soft, but
axis-aligned, which makes this work closely related to our
approach. Since DNDTs are generated via the Kronecker
product of the binning layers, the structure depends on the
number of features and classes (and the number of bins). As
discussed by the authors, this results in poor scalability w.r.t.
the number of features, which currently can only be solved
by using random forests for high-dimensional datasets (> 12
features). Our approach, in contrast, scales linearly with the
number of features, making it efficient for high-dimensional
datasets. Furthermore, using the Kronecker product to build
the tree prevents splitting on the same feature with different
thresholds in the same path, which can be crucial to achieve
a good performance. For GradTree, both the split threshold
and the split index are learned parameters, inherently allow-
ing the model to split on the same feature multiple times.

3 GradTree: Gradient-Based Decision Trees
In this section, we introduce GradTree. We present a new
DT representation and a novel algorithm that allows learning
hard, axis-aligned DTs with gradient descent. More specif-
ically, we will use backpropagation with a straight-through
(ST) operator (Section 3.3) on a dense DT representation
(Section 3.2) to adjust the model parameters during the train-
ing. Furthermore, our novel tree routing (Section 3.4) allows
an efficient optimization of all parameters over an entire
batch with a single set of matrix operations.

3.1 Arithmetic Decision Tree Formulation
Here, we introduce a notation for DTs with respect to their
parameters. We formulate DTs as an arithmetic function
based on addition and multiplication, rather than as a nested
concatenation of rules, which is necessary for a gradient-
based learning. Note that our notation and training procedure
assume fully-grown (i.e. complete, full) DTs. After training,
we apply a basic post-hoc pruning to reduce the tree size
for application. Our formulation aligns with Kontschieder
et al. (2015). However, they only consider stochastic rout-
ing and oblique trees, whereas our formulation emphasizes
deterministic routing and axis-aligned trees.

For a DT of depth d, the parameters include one split
threshold and one feature index for each internal node, rep-
resented as vectors τ ∈ R2d−1 and ι ∈ N2d−1 respectively,
where 2d− 1 equals the number of internal nodes in a fully-
grown DT. Additionally, each leaf node comprises a class
membership, in the case of a classification task, which we
denote as the vector λ ∈ C2d , where C is the set of classes
and 2d equals the number of leaf nodes in a fully-grown DT.

Formally, a DT can be expressed as a function
DT (·|τ , ι,λ) : Rn → C with respect to its parameters:

DT (x|τ , ι,λ) =
2d−1∑
l=0

λl L(x|l, τ , ι) (1)

The function L indicates whether a sample x ∈ Rn belongs
to a leaf l, and can be defined as a multiplication of the split
functions of the preceding internal nodes. We define the split
function S as a Heaviside step function

SHeaviside(x|ι, τ) =

{
1, if xι ≥ τ

0, otherwise
(2)

where ι is the index of the feature considered at a certain
split and τ is the corresponding threshold.

By enumerating the internal nodes of a fully-grown tree
with depth d in a breadth-first order, we can now define the
indicator function L for a leaf l as

L(x|l, τ , ι) =
d∏

j=1

(1− p(l, j)) S(x|τi(l,j), ιi(l,j))

+p(l, j)
(
1− S(x|τi(l,j), ιi(l,j))

) (3)

Here, i is the index of the internal node preceding a leaf
node l at a certain depth j and can be calculated as

i(l, j) = 2j−1 +

⌊
l

2d−(j−1)

⌋
− 1 (4)

Additionally, p indicates whether the left (p = 0) or the
right branch (p = 1) was taken at the internal node preceding
a leaf node l at a certain depth j. We can calculate p as

p(l, j) =

⌊
l

2d−j

⌋
mod 2 (5)

As becomes evident, DTs involve non-differentiable oper-
ations in terms of the split function, including the split fea-
ture selection (Equation 2). This precludes the application of
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Figure 2: Standard vs. Dense DT Representation. Comparison of a standard and the equivalent dense representation for an
exemplary DT with depth 2 and a dataset with 3 variables and 2 classes. Here, Slh stands for Slogistic hard (Equation 7).

backpropagation for learning the parameters. Specifically, to
efficiently learn a DT using backpropagation, we must ad-
dress three challenges:

C1 The index ι for the split feature selection is defined
as ι ∈ N. However, the index ι is a parameter of the DT
and a gradient-based optimization requires ι ∈ R.
C2 The split function S(x|ι, τ) is a Heaviside step func-
tion with an undefined gradient for xι = τ and 0 gradient
elsewhere, which precludes an efficient optimization.
C2 Leafs in a vanilla DT comprise a class membership
λ ∈ C. To calculate an informative loss and optimize the
leaf parameters with gradient descent, we need λ ∈ R.

Additionally, the computation of the internal node index
i and path position p involves non-differentiable operations.
However, given our focus on fully-grown trees, these values
remain constant, allowing for their computation prior to the
optimization process.

3.2 Dense Decision Tree Representation
In this subsection, we present a differentiable representation
of the feature indices ι to facilitate gradient-based optimiza-
tion, which is illustrated in Figure 2.

To this end, we expand the vector ι ∈ R2d−1 to a ma-
trix I ∈ R2d−1 × Rn. This is achieved by one-hot encoding
the feature index as ι ∈ Rn for each internal node. This
adjustment is necessary for the optimization process to ac-
count for the fact that feature indices are categorical instead
of ordinal. Although our matrix representation for feature se-
lection has parallels with that proposed by Popov, Morozov,
and Babenko (2019), we introduce a novel aspect: A ma-
trix representation for split thresholds. We denote this rep-
resentation as T ∈ R2d−1 × Rn. Instead of representing a
single value for all features, we store individual values for
each feature, denoted as τ ∈ Rn. This modification is tai-
lored to support the optimization process, particularly in rec-
ognizing that split thresholds are feature-specific and non-
interchangeable. In essence, a viable split threshold for one
feature may not be suitable for another. This adjustment acts
as a memory mechanism, ensuring that a given split thresh-
old is exclusively associated with the corresponding feature.
Consequently, this refinement enhances the exploration of
feature selection at every split during the training. Besides

the previously mentioned advantages, using a dense DT rep-
resentation allows the use of matrix multiplications for an
efficient computation. Accordingly, we can reformulate the
Heaviside split function (Equation 2) as

Slogistic(x|ι, τ ) = S

(
n∑

i=0

ιixi −
n∑

i=0

ιiτi

)
(6)

Slogistic hard(x|ι, τ ) = ⌊Slogistic(x|ι, τ )⌉ (7)

where S(x) = 1
1+e−x denotes the logistic function and

⌊·⌉ represents for rounding to the nearest integer. In our con-
text, with ι being one-hot encoded, Slogistic hard(x|ι, τ ) =
SHeaviside(x|ι, τ) holds.

3.3 Backpropagation of Decision Tree Loss
While the dense representation introduced previously em-
phasizes an efficient learning of axis-aligned DTs, it does
not solve C1-C3. In this subsection, we will address those
challenges by using the ST operator for backpropagation.

For the function value calculation in the forward pass,
we need to assure that ι is a one-hot encoded vector. This
can be achieved by applying a hardmax function on the fea-
ture index vector for each internal node. However, apply-
ing a hardmax is a non-differentiable operation, which pre-
cludes gradient computation. To overcome this issue, we use
the ST operator (Bengio, Léonard, and Courville 2013): For
the forward pass, we apply the hardmax as is. For the back-
ward pass, we exclude this operation and directly propagate
back the gradients of ι. Accordingly, we can optimize the
parameters of ι where ι ∈ R while still using axis-aligned
splits during training (C1). However, this procedure intro-
duces a mismatch between the forward and backward pass.
To reduce this mismatch, we additionally perform an entmax
transformation (Peters, Niculae, and Martins 2019) to gener-
ate a sparse distribution over ι before applying the hardmax.

Similarly, we employ the ST operator to ensure hard splits
(Equation 7) by excluding ⌊·⌉ for the backward pass (C2).
Using the sigmoid logistic function before applying the ST
operator (see Equation 6) utilizes the distance to the split
threshold as additional information for the gradient calcu-
lation. If the feature considered at an internal node is close
to the split threshold for a specific sample (i.e. it is more



Algorithm 1: Tree Pass Function
1: function PASS(I, T, L,x)
2: I ← entmax(I)
3: I ← I − c∗1 where c∗1 = I − hardmax(I) ▷ ST operator
4: ŷ ← [0]c

5: for l = 0, . . . , 2d − 1 do
6: p← 1
7: for j = 1, . . . , d do
8: i← 2j−1 +

⌊
l

2d−(j−1)

⌋
− 1 ▷ Equation 4

9: p←
⌊

l
2d−j

⌋
mod 2 ▷ Equation 5

10: s← S

(
n∑

i=0

Ti,i Ii,i −
n∑

i=0

xi Ii,i

)
▷ Equation 6

11: s← s− c∗2 where c∗2 = s− ⌊s⌉ ▷ ST operator
12: p← p ((1− p) s+ p (1− s)) ▷ Equation 3
13: end for
14: ŷ ← ŷ + Ll p ▷ Equation 1
15: end for
16: return σ (ŷ) ▷ Softmax σ to get probability distribution
17: end function

important for the current decision), this will result in larger
gradients compared to a sample that is more distant.

Furthermore, we need to adjust the leaf nodes of the DT
to allow an efficient loss calculation (C3). Vanilla DTs con-
tain the predicted class for each leaf node and are functions
DT : Rn → C. We use a probability distribution at each leaf
node and therefore define DTs as a function DT : Rn → Rc

where c is the number of classes. Consequently, the param-
eters of the leaf nodes are defined as L ∈ R2d × Rc for the
whole tree and λ ∈ Rc for a specific leaf node. This adjust-
ment allows the application of standard loss functions.

3.4 Deterministic Tree Routing and Training
In the previous subsections, we introduced the adjustments
that are necessary to apply gradient descent to DTs. Dur-
ing the optimization, we calculate the gradients with back-
propagation based on the computation graph of the tree pass
function. The tree pass function to calculate the function val-
ues is summarized in Algorithm 1 and utilizes the adjust-
ments introduced in the previous sections. Our tree routing
facilitates the computation of the tree pass function over a
complete batch as a single set of matrix operations, which
allows an efficient computation. We also want to note that
our dense representation can be converted into an equivalent
vanilla DT representation at each point in time. Similarly,
the fully-grown nature of GradTree is only required during
the gradient-based optimization and standard pruning tech-
niques to reduce the tree size are applied post-hoc.

Furthermore, our implementation optimizes the gradient
descent algorithm by leveraging common stochastic gra-
dient descent techniques, including mini-batch calculation
and momentum using the Adam optimizer (Kingma and Ba
2014) with weight averaging (Izmailov et al. 2018). More-
over, we implement early stopping and random restarts to
avoid bad initial parametrizations, where the best parame-
ters are selected based on the validation loss. Further details
can be found in Appendix C.

4 Experimental Evaluation
The following experiments aim to evaluate the predictive ca-
pability of GradTree against existing methods.

4.1 Experimental Setup
Datasets and Preprocessing The experiments were con-
ducted on several benchmark datasets, mainly from the UCI
repository (Dua and Graff 2017). For all datasets, we per-
formed a standard preprocessing: Similar to Popov, Moro-
zov, and Babenko (2019), we applied leave-one-out encod-
ing to all categorical features and further performed a quan-
tile transform, making each feature follow a normal distribu-
tion. We used a 80%/20% train-test split for all datasets. To
account for class imbalance, we rebalanced datasets using
SMOTE (Chawla et al. 2002) if the minority class accounts
for less than 25

c−1% of the data, where c is the number of
classes. For GradTree and DNDT, we used 20% of the train-
ing data as validation data for early stopping. As DL8.5 re-
quires binary features, we discretized numeric features using
quantile binning with 5 bins and one-hot encoded categori-
cal features. Details and sources of the datasets are available
in Appendix D

Methods We compared GradTree to the most prominent
approach from each category (see Section 2) to ensure a con-
cise, yet holistic evaluation focusing on hard, axis-aligned
DTs. Specifically, we selected the following methods:

• CART: We use the sklearn (Pedregosa et al. 2011) imple-
mentation, which uses an optimized version of the CART
algorithm. CART typically employs the Gini impurity
measure, but we additionally allowed entropy.

• Evolutionary DTs: We use GeneticTree (Pysiak 2021)
for an efficient learning of DTs with a genetic algorithm.

• DNDT: We use the official DNDT implementa-
tion (Yang, Morillo, and Hospedales 2022). For a fair
comparison, we enforce binary trees by setting the num-
ber of cut points to 1 and ensure hard splits during in-
ference. As suggested by Yang, Morillo, and Hospedales
(2018), we limited DNDTs to datasets with no more than
12 features, due to scalability issues.

• DL8.5 (Optimal DTs): We use the official DL8.5 im-
plementation (Aglin, Nijssen, and Schaus 2022) includ-
ing improvements from MurTree (Demirović et al. 2022)
which reduces the runtime significantly.

GradTree is implemented in Python using TensorFlow1

To ensure a fair comparison, we further applied a simple
post-hoc pruning for GradTree to remove all branches with
zero samples based on one pass of the training data. Similar
to DNDT, we used a cross-entropy loss.

Hyperparameters We conducted a random search with
cross-validation to determine the optimal hyperparameters.
The complete list of relevant hyperparameters for each ap-
proach along with additional details on the selection are in
the Appendix C.

1The code of our implementation is available under https://
github.com/s-marton/GradTree.

https://github.com/s-marton/GradTree
https://github.com/s-marton/GradTree


Gradient-Based Non-Greedy Greedy

GradTree (ours) DNDT GeneticTree DL8.5 (Optimal) CART

Blood Transfusion 0.628 ± .036 (1) 0.543 ± .051 (5) 0.575 ± .094 (4) 0.590 ± .034 (3) 0.613 ± .044 (2)
Banknote Authentication 0.987 ± .007 (1) 0.888 ± .013 (5) 0.922 ± .021 (4) 0.962 ± .011 (3) 0.982 ± .007 (2)
Titanic 0.776 ± .025 (1) 0.726 ± .049 (5) 0.730 ± .074 (4) 0.754 ± .031 (2) 0.738 ± .057 (3)
Raisins 0.840 ± .022 (4) 0.821 ± .033 (5) 0.857 ± .021 (1) 0.849 ± .027 (3) 0.852 ± .017 (2)
Rice 0.926 ± .007 (3) 0.919 ± .012 (5) 0.927 ± .005 (2) 0.925 ± .008 (4) 0.927 ± .006 (1)
Echocardiogram 0.658 ± .113 (1) 0.622 ± .114 (3) 0.628 ± .105 (2) 0.609 ± .112 (4) 0.555 ± .111 (5)
Wisconcin Breast Cancer 0.904 ± .022 (2) 0.913 ± .032 (1) 0.892 ± .028 (4) 0.896 ± .021 (3) 0.886 ± .025 (5)
Loan House 0.714 ± .041 (1) 0.694 ± .036 (2) 0.451 ± .086 (5) 0.607 ± .045 (4) 0.662 ± .034 (3)
Heart Failure 0.750 ± .070 (3) 0.754 ± .062 (2) 0.748 ± .068 (4) 0.692 ± .062 (5) 0.775 ± .054 (1)
Heart Disease 0.779 ± .047 (1) n > 12 0.704 ± .059 (4) 0.722 ± .065 (2) 0.715 ± .062 (3)
Adult 0.743 ± .034 (2) n > 12 0.464 ± .055 (4) 0.723 ± .011 (3) 0.771 ± .011 (1)
Bank Marketing 0.640 ± .027 (1) n > 12 0.473 ± .002 (4) 0.502 ± .011 (3) 0.608 ± .018 (2)
Congressional Voting 0.950 ± .021 (1) n > 12 0.942 ± .021 (2) 0.924 ± .043 (4) 0.933 ± .032 (3)
Absenteeism 0.626 ± .047 (1) n > 12 0.432 ± .073 (4) 0.587 ± .047 (2) 0.564 ± .042 (3)
Hepatitis 0.608 ± .078 (2) n > 12 0.446 ± .024 (4) 0.586 ± .083 (3) 0.622 ± .078 (1)
German 0.592 ± .068 (1) n > 12 0.412 ± .006 (4) 0.556 ± .035 (3) 0.589 ± .065 (2)
Mushroom 1.000 ± .001 (1) n > 12 0.984 ± .003 (4) 0.999 ± .001 (2) 0.999 ± .001 (3)
Credit Card 0.674 ± .014 (4) n > 12 0.685 ± .004 (1) 0.679 ± .007 (3) 0.683 ± .010 (2)
Horse Colic 0.842 ± .039 (1) n > 12 0.496 ± .169 (4) 0.708 ± .038 (3) 0.786 ± .062 (2)
Thyroid 0.905 ± .010 (2) n > 12 0.605 ± .116 (4) 0.682 ± .018 (3) 0.922 ± .011 (1)
Cervical Cancer 0.521 ± .043 (1) n > 12 0.514 ± .034 (2) 0.488 ± .027 (4) 0.506 ± .034 (3)
Spambase 0.903 ± .025 (2) n > 12 0.863 ± .019 (3) 0.863 ± .011 (4) 0.917 ± .011 (1)

Mean Reciprocal Rank (MRR) ↑ 0.758 ± .306 (1) 0.370 ± .268 (3) 0.365 ± .228 (4) 0.335 ± .090 (5) 0.556 ± .293 (2)
Mean Relative Diff. (MRD) ↓ 0.008 ± .012 (1) 0.056 ± .051 (3) 0.211 ± .246 (5) 0.084 ± .090 (4) 0.035 ± .048 (2)

Table 1: Binary Classification Performance. We report macro F1-scores (mean ± stdev over 10 trials) on test data with
optimized hyperparameters. The rank of each method is presented in brackets. The datasets are sorted by the number of features.

4.2 Results

GradTree outperforms existing DT learners for bi-
nary classification First, we evaluated the performance
of GradTree against existing approaches on the bench-
mark datasets in terms of the macro F1-Score, which in-
herently considers class imbalance. We report the relative
difference to the best model (MRD) and mean reciprocal
rank (MRR), following the approach of Yang, Morillo, and
Hospedales (2018). Overall, GradTree outperformed exist-
ing approaches for binary classification tasks (best MRR of
0.758 and MRD of 0.008) and achieved competitive results
for multi-class tasks (second-best MRR of 0.619 and MRD
of 0.069). More specifically, GradTree significantly outper-
formed state-of-the-art non-greedy DT methods, including
DNDTs as our gradient-based benchmark.

For binary classification (Table 1), GradTree demon-
strated superior performance over CART, achieving the
best performance on 13 datasets as compared to only
6 datasets for CART. Notably, the performance differ-
ence between GradTree and existing methods was sub-
stantial for several datasets, such as Echocardiogram,
Heart Disease and Absenteeism. For multi-class datasets,
GradTree achieved the second-best overall performance.
While GradTree still achieved a superior performance for
low-dimensional datasets (top part of Table 2), CART
achieved the best results for high-dimensional datasets with
a high number of classes. We can explain this by the dense
representation used for the gradient-based optimization. Us-
ing our representation, the difficulty of the optimization task
increases with the number of features (more parameters at

each internal node) and the number of classes (more param-
eters at each leaf node). In future work, we aim to optimize
our dense representation, e.g., by using parameter sharing.

GradTree has a small effective tree size The effective
tree size (= size after pruning) of GradTree is smaller than
CART for binary and marginally higher for multi-class tasks
(Table 3). Only the tree size for GeneticTree is significantly
smaller, which is caused by the complexity penalty of the ge-
netic algorithm. DL8.5 also has a smaller average tree size
than CART and GradTree. We can attribute this to DL8.5
being only feasible up to a depth of 4 due to the high com-
putational complexity. The tree size for DNDTs scales with
the number of features (and classes) which quickly results in
large trees. Furthermore, pruning DNDTs is non-trivial due
to the use of the Kronecker product (it is not sufficient to
prune subtrees bottom-up).

GradTree is robust to overfitting We can observe that
gradient-based approaches were more robust and less prone
to overfitting compared to a greedy optimization with CART
and alternative non-greedy methods. We measure overfitting
by the difference between the mean train and test perfor-
mance (see Table 3). For binary tasks, GradTree exhibits
a train-test performance difference of 0.051, considerably
smaller than that of CART (0.183), GeneticTree (0.204),
and DL8.5 (0.202). DNDTs, which are also gradient-based,
achieved an even smaller difference of 0.039. For multi-class
tasks, the difference was significantly smaller for GradTree
compared to any other approach.



Gradient-Based Non-Greedy Greedy

GradTree (ours) DNDT GeneticTree DL8.5 (Optimal) CART

Iris 0.938 ± .057 (1) 0.870 ± .063 (5) 0.912 ± .055 (3) 0.909 ± .046 (4) 0.937 ± .046 (2)
Balance Scale 0.593 ± .045 (1) 0.475 ± .104 (5) 0.529 ± .043 (3) 0.525 ± .039 (4) 0.574 ± .030 (2)
Car 0.440 ± .085 (3) 0.485 ± .064 (2) 0.306 ± .068 (4) 0.273 ± .063 (5) 0.489 ± .094 (1)
Glass 0.560 ± .090 (3) 0.434 ± .072 (5) 0.586 ± .090 (2) 0.501 ± .100 (4) 0.663 ± .086 (1)
Contraceptive 0.496 ± .050 (1) 0.364 ± .050 (3) 0.290 ± .048 (5) 0.292 ± .036 (4) 0.384 ± .075 (2)
Solar Flare 0.151 ± .033 (3) 0.171 ± .051 (1) 0.146 ± .018 (4) 0.144 ± .034 (5) 0.157 ± .022 (2)
Wine 0.933 ± .031 (1) 0.858 ± .041 (4) 0.888 ± .039 (3) 0.852 ± .022 (5) 0.907 ± .042 (2)
Zoo 0.874 ± .111 (3) n > 12 0.782 ± .111 (4) 0.911 ± .106 (2) 0.943 ± .076 (1)
Lymphography 0.610 ± .191 (1) n > 12 0.381 ± .124 (4) 0.574 ± .196 (2) 0.548 ± .154 (3)
Segment 0.941 ± .009 (2) n > 12 0.715 ± .114 (4) 0.808 ± .013 (3) 0.963 ± .010 (1)
Dermatology 0.930 ± .030 (2) n > 12 0.785 ± .126 (4) 0.885 ± .036 (3) 0.957 ± .026 (1)
Landsat 0.807 ± .011 (2) n > 12 0.628 ± .084 (4) 0.783 ± .008 (3) 0.835 ± .011 (1)
Annealing 0.638 ± .126 (3) n > 12 0.218 ± .053 (4) 0.787 ± .121 (2) 0.866 ± .094 (1)
Splice 0.873 ± .030 (2) n > 12 0.486 ± .157 (3) > 60 min 0.881 ± .021 (1)

Mean Reciprocal Rank (MRR) ↑ 0.619 ± .303 (2) 0.383 ± .293 (3) 0.288 ± .075 (5) 0.315 ± .116 (4) 0.774 ± .274 (1)
Mean Relative Diff. (MRD) ↓ 0.069 ± .102 (2) 0.188 ± .200 (3) 0.521 ± .749 (5) 0.215 ± .249 (4) 0.040 ± .081 (1)

Table 2: Multi-Class Classification Performance. We report macro F1-scores (mean ± stdev over 10 trials) on test data with
optimized hyperparameters. The rank of each method is presented in brackets. The datasets are sorted by the number of features.

Tree Size Train-Test
Difference

Default Setting
(MRR ↑)

Binary Multi Binary Multi Binary Multi

GradTree 54 86 0.051 0.174 0.670 0.470
DNDT 887 907 0.039 0.239 0.306 0.295
GeneticTree 7 20 0.204 0.258 0.427 0.315
DL8.5 28 29 0.202 0.260 0.371 0.331
CART 67 76 0.183 0.247 0.571 0.929

Table 3: Summarized Results. Left: Average tree size. Mid:
Mean difference between train and test performance as over-
fitting indicator. Right: Test performance with default pa-
rameters. Detailed results are in Table 7-9.

GradTree does not rely on extensive hyperparameter op-
timization Besides their interpretability, a distinct advan-
tage of DTs over more sophisticated models is that they typ-
ically do not rely on an extensive hyperparameter optimiza-
tion. In this experiment, we show that the same is true for
GradTree by evaluating the performance with default con-
figurations (see Table 3). When using the default parame-
ters, GradTree still outperformed the other methods on bi-
nary tasks (highest MRR and most wins) and achieved com-
petitive results for multi-class tasks (second-highest MRR).

GradTree is efficient for large and high-dimensional
datasets For each dataset, a greedy optimization using
CART was substantially faster than other methods, taking
less than a second. Nevertheless, for most datasets, train-
ing GradTree took less than 30 seconds (mean runtime of
35 seconds). DNDT had comparable runtimes to GradTree.
For most datasets, DL8.5 had a low runtime of less than 10
seconds. However, scalability issues become apparent with
DL8.5, especially with an increasing number of features and
samples. Its runtime surpassed GradTree on various datasets,
taking around 300 seconds for Credit Card and exceeding

ST Entmax
(ours)

ST
Gumbel

Temp.
Annealing

Default Binary 0.764 0.560 0.757
Multi 0.638 0.272 0.602

Optimized Binary 0.771 0.569 0.759
Multi 0.699 0.297 0.601

Table 4: Ablation Study. We compare our approach to deal
with the non-differentiable nature of DTs with alternative
methods, reporting the average macro F1-scores over 10 tri-
als with optimized and default hyperparameters. The com-
plete results are listed in Table 5-6.

830 seconds for Landsat. For Splice, DL8.5 did not find a
solution within 60 minutes and the optimization was termi-
nated. Detailed runtimes are in Table 10.

ST entmax outperforms alternative methods In an abla-
tion study (Table 4), we evaluated our design choice of uti-
lizing an ST operator directly after an entmax transformation
to address the non-differentiability of DTs. We contrasted
this against alternative strategies found in the literature. Our
approach notably surpassed ST Gumbel Softmax (Jang, Gu,
and Poole 2016) and outperformed the temperature anneal-
ing technique proposed by Chang, Caruana, and Goldenberg
(2021) to gradually turn the entmax one-hot.

5 Conclusion and Future Work
In this paper, we proposed GradTree, a novel method for
learning hard, axis-aligned DTs based on a joint optimiza-
tion of all tree parameters with gradient descent. Our empir-
ical evaluations indicate that GradTree excels over existing
methods in binary tasks and offers competitive performance
in multi-class tasks. The substantial performance increase
achieved by GradTree across multiple datasets highlights
its importance as a noteworthy contribution to the existing



repertoire of DT learning methods.
Moreover, gradient-based optimization provides greater

flexibility, allowing for easy integration of custom loss func-
tions tailored to specific application scenarios. Another ad-
vantage is the ability to relearn the threshold value as well as
the split index. Therefore, GradTree is suitable for dynamic
environments, such as online learning tasks.

Currently, GradTree employs conventional post-hoc prun-
ing. In future work, we want to consider pruning already
during the training, for instance through a learnable choice
parameter to decide if a node is pruned, similar to Zant-
edeschi, Kusner, and Niculae (2021). Although our focus
was on stand-alone DTs aiming for intrinsic interpretability,
GradTree holds potential as a foundational method for learn-
ing hard, axis-aligned tree ensembles end-to-end via gra-
dient descent. Exploring this performance-interpretability
trade-off is an interesting direction for future research.
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A Gradient Descent Optimization

We use stochastic gradient descent (SGD) to minimize the loss function of GradTree, which is outlined in Algorithm 2. We
use backpropagation to calculate the gradients in Line 11-13. Furthermore, our implementation optimizes Algorithm 2 by
exploiting common SGD techniques, including mini-batch calculation and momentum using the Adam optimizer (Kingma and
Ba 2014). We further apply weight averaging (Izmailov et al. 2018) over 5 consecutive checkpoints, similar to Popov, Morozov,
and Babenko (2019). Our novel tree pass function allows formulating Line 7-9 as a single set of matrix operations for an
entire batch, which results in a very efficient optimization. Moreover, we implement an early stopping procedure based on the
validation loss. To avoid bad initial parametrizations during the initialization, we additionally implement random restarts where
the best parameters are selected based on the validation loss.

Algorithm 2: Gradient Descent Training for Decision Trees

1: function TRAINDT(I, T, L,X,y, n, c, d, ξ)
2: I ∼ U

(
−
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22d−1+n

,
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22d−1+n

)
3: T ∼ U

(
−
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22d−1+n

,
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6
22d−1+n

)
4: L ∼ U

(
−
√

6
22d+c

,
√

6
22d+c

)
5: for i = 1, . . . , ξ do
6: ŷ ← ∅
7: for j = 1, . . . , |X| do
8: ŷj = PASS(I, T, L,Xj)
9: ŷ ← ŷ ∪ ŷj

10: end for
11: I ← I + η ∂

∂IL(y, ŷ) ▷ Calculate gradients with backpropagation
12: T ← T + η ∂

∂T L(y, ŷ) ▷ Calculate gradients with backpropagation
13: L← L+ η ∂

∂LL(y, ŷ) ▷ Calculate gradients with backpropagation
14: end for
15: end function



B Additional Results

B.1 Ablation Study

ST Entmax (ours) ST Gumbel Softmax Temperature Annealing

Blood Transfusion 0.628 ± .036 (1) 0.482 ± .083 (3) 0.606 ± .073 (2)
Banknote Authentication 0.987 ± .007 (1) 0.770 ± .144 (3) 0.946 ± .041 (2)
Titanic 0.776 ± .025 (1) 0.543 ± .093 (3) 0.762 ± .036 (2)
Raisins 0.840 ± .022 (2) 0.792 ± .069 (3) 0.846 ± .028 (1)
Rice 0.926 ± .007 (2) 0.859 ± .058 (3) 0.927 ± .006 (1)
Echocardiogram 0.658 ± .113 (1) 0.574 ± .108 (3) 0.619 ± .151 (2)
Wisconsin Diagnostic Breast Cancer 0.904 ± .022 (1) 0.844 ± .059 (3) 0.893 ± .031 (2)
Loan House 0.714 ± .041 (1) 0.522 ± .098 (3) 0.692 ± .051 (2)
Heart Failure 0.750 ± .070 (1) 0.556 ± .095 (3) 0.749 ± .060 (2)
Heart Disease 0.779 ± .047 (1) 0.607 ± .136 (3) 0.754 ± .035 (2)
Adult 0.743 ± .034 (1) 0.583 ± .029 (3) 0.737 ± .045 (2)
Bank Marketing 0.640 ± .027 (1) 0.370 ± .052 (3) 0.611 ± .053 (2)
Congressional Voting 0.950 ± .021 (1) 0.710 ± .201 (3) 0.946 ± .026 (2)
Absenteeism 0.626 ± .047 (1) 0.489 ± .059 (3) 0.604 ± .036 (2)
Hepatitis 0.608 ± .078 (1) 0.395 ± .138 (3) 0.576 ± .122 (2)
German 0.592 ± .068 (2) 0.486 ± .072 (3) 0.634 ± .028 (1)
Mushroom 1.000 ± .001 (1) 0.682 ± .063 (3) 0.996 ± .005 (2)
Credit Card 0.674 ± .014 (1) 0.488 ± .019 (3) 0.668 ± .015 (2)
Horse Colic 0.842 ± .039 (2) 0.442 ± .126 (3) 0.843 ± .039 (1)
Thyroid 0.905 ± .010 (1) 0.449 ± .087 (3) 0.888 ± .017 (2)
Cervical Cancer 0.521 ± .043 (2) 0.333 ± .191 (3) 0.523 ± .042 (1)
Spambase 0.903 ± .025 (1) 0.541 ± .093 (3) 0.875 ± .019 (2)

Mean ↑ 0.771 ± .036 (1) 0.569 ± .094 (3) 0.759 ± .044 (2)
Mean Reciprocal Rank (MRR) ↑ 0.886 ± .214 (1) 0.333 ± .000 (3) 0.613 ± .214 (2)

Iris 0.938 ± .057 (1) 0.743 ± .224 (3) 0.930 ± .048 (2)
Balance Scale 0.593 ± .045 (1) 0.372 ± .073 (3) 0.561 ± .050 (2)
Car 0.440 ± .085 (1) 0.226 ± .067 (3) 0.334 ± .070 (2)
Glass 0.560 ± .090 (1) 0.209 ± .100 (3) 0.467 ± .077 (2)
Contraceptive 0.496 ± .050 (1) 0.324 ± .064 (3) 0.422 ± .074 (2)
Solar Flare 0.151 ± .033 (1) 0.065 ± .042 (3) 0.150 ± .021 (2)
Wine 0.933 ± .031 (1) 0.565 ± .195 (3) 0.881 ± .043 (2)
Zoo 0.874 ± .111 (1) 0.183 ± .093 (3) 0.678 ± .111 (2)
Lymphography 0.610 ± .191 (1) 0.307 ± .104 (2) 0.303 ± .121 (3)
Segment 0.941 ± .009 (1) 0.245 ± .082 (3) 0.835 ± .040 (2)
Dermatology 0.930 ± .030 (1) 0.148 ± .091 (3) 0.757 ± .144 (2)
Landsat 0.807 ± .011 (1) 0.349 ± .051 (3) 0.789 ± .009 (2)
Annealing 0.638 ± .126 (1) 0.089 ± .078 (3) 0.597 ± .074 (2)
Splice 0.873 ± .030 (1) 0.337 ± .033 (3) 0.711 ± .054 (2)

Mean ↑ 0.699 ± .064 (1) 0.297 ± .093 (3) 0.601 ± .067 (2)
Mean Reciprocal Rank (MRR) ↑ 1.000 ± .000 (1) 0.345 ± .043 (3) 0.488 ± .043 (2)

Table 5: Ablation Study Optimized Parameters. We report macro F1-scores (mean ± stdev over 10 trials) with optimized
parameters. We also report the rank of each approach in brackets. The datasets are sorted by the number of features. The top
part comprises binary classification tasks and the bottom part multi-class datasets.



ST Entmax (ours) ST Gumbel Softmax Temperature Annealing

Blood Transfusion 0.627 ± .056 (1) 0.497 ± .086 (3) 0.618 ± .045 (2)
Banknote Authentication 0.980 ± .008 (1) 0.722 ± .126 (3) 0.970 ± .007 (2)
Titanic 0.782 ± .035 (1) 0.623 ± .096 (3) 0.769 ± .033 (2)
Raisins 0.850 ± .025 (2) 0.802 ± .055 (3) 0.853 ± .016 (1)
Rice 0.926 ± .006 (1) 0.802 ± .101 (3) 0.926 ± .006 (1)
Echocardiogram 0.648 ± .130 (1) 0.571 ± .093 (3) 0.595 ± .121 (2)
Wisconsin Diagnostic Breast Cancer 0.902 ± .029 (2) 0.841 ± .129 (3) 0.903 ± .028 (1)
Loan House 0.695 ± .035 (2) 0.490 ± .113 (3) 0.706 ± .040 (1)
Heart Failure 0.745 ± .063 (2) 0.489 ± .095 (3) 0.761 ± .055 (1)
Heart Disease 0.736 ± .069 (1) 0.473 ± .148 (3) 0.721 ± .049 (2)
Adult 0.749 ± .028 (1) 0.601 ± .034 (3) 0.737 ± .042 (2)
Bank Marketing 0.626 ± .017 (1) 0.389 ± .084 (3) 0.626 ± .010 (1)
Congressional Voting 0.953 ± .021 (1) 0.642 ± .161 (3) 0.953 ± .021 (2)
Absenteeism 0.620 ± .050 (2) 0.452 ± .056 (3) 0.625 ± .065 (1)
Hepatitis 0.609 ± .103 (1) 0.390 ± .125 (3) 0.574 ± .124 (2)
German 0.584 ± .057 (2) 0.511 ± .086 (3) 0.596 ± .052 (1)
Mushroom 0.997 ± .003 (1) 0.701 ± .083 (3) 0.949 ± .095 (2)
Credit Card 0.676 ± .009 (1) 0.479 ± .020 (3) 0.669 ± .005 (2)
Horse Colic 0.842 ± .033 (2) 0.458 ± .101 (3) 0.857 ± .050 (1)
Thyroid 0.872 ± .015 (1) 0.457 ± .099 (3) 0.866 ± .013 (2)
Cervical Cancer 0.496 ± .047 (1) 0.354 ± .160 (3) 0.479 ± .048 (2)
Spambase 0.893 ± .015 (1) 0.580 ± .077 (3) 0.891 ± .008 (2)

Mean ↑ 0.764 ± .039 (1) 0.560 ± .097 (3) 0.757 ± .042 (2)
Mean Reciprocal Rank (MRR) ↑ 0.841 ± .238 (1) 0.333 ± .000 (3) 0.705 ± .252 (2)

Iris 0.922 ± .068 (1) 0.745 ± .207 (3) 0.916 ± .053 (2)
Balance Scale 0.565 ± .043 (1) 0.323 ± .075 (3) 0.547 ± .037 (2)
Car 0.408 ± .066 (1) 0.249 ± .039 (3) 0.387 ± .095 (2)
Glass 0.482 ± .110 (1) 0.139 ± .092 (3) 0.405 ± .110 (2)
Contraceptive 0.398 ± .054 (2) 0.320 ± .048 (3) 0.407 ± .056 (1)
Solar Flare 0.152 ± .031 (1) 0.062 ± .051 (3) 0.140 ± .049 (2)
Wine 0.861 ± .057 (2) 0.451 ± .104 (3) 0.884 ± .040 (1)
Zoo 0.839 ± .136 (1) 0.144 ± .119 (3) 0.709 ± .151 (2)
Lymphography 0.463 ± .162 (1) 0.291 ± .133 (3) 0.337 ± .156 (2)
Segment 0.918 ± .014 (1) 0.177 ± .116 (3) 0.906 ± .026 (2)
Dermatology 0.903 ± .025 (1) 0.211 ± .137 (3) 0.839 ± .085 (2)
Landsat 0.771 ± .019 (1) 0.343 ± .066 (3) 0.769 ± .027 (2)
Annealing 0.496 ± .111 (1) 0.073 ± .049 (3) 0.478 ± .078 (2)
Splice 0.748 ± .168 (1) 0.283 ± .046 (3) 0.703 ± .056 (2)

Mean ↑ 0.638 ± .076 (1) 0.272 ± .092 (3) 0.602 ± .073 (2)
Mean Reciprocal Rank (MRR) ↑ 0.929 ± .175 (1) 0.333 ± .000 (3) 0.571 ± .175 (2)

Table 6: Ablation Study Default Parameters. We report macro F1-scores (mean ± stdev over 10 trials) with default parameters.
We also report the rank of each approach in brackets. The datasets are sorted by the number of features. The top part comprises
binary classification tasks and the bottom part multi-class datasets.



B.2 Default Parameter Performance

Gradient-Based Non-Greedy Greedy

GradTree (ours) DNDT GeneticTree DL8.5 (Optimal) CART

Blood Transfusion 0.627 ± .056 (1) 0.558 ± .059 (5) 0.574 ± .093 (3) 0.590 ± .034 (2) 0.573 ± .036 (4)
Banknote Authentication 0.980 ± .008 (2) 0.886 ± .024 (5) 0.928 ± .022 (4) 0.962 ± .011 (3) 0.981 ± .006 (1)
Titanic 0.782 ± .035 (1) 0.740 ± .026 (4) 0.763 ± .041 (2) 0.754 ± .031 (3) 0.735 ± .041 (5)
Raisins 0.850 ± .025 (2) 0.832 ± .026 (4) 0.859 ± .022 (1) 0.849 ± .027 (3) 0.811 ± .028 (5)
Rice 0.926 ± .006 (2) 0.902 ± .018 (5) 0.927 ± .005 (1) 0.925 ± .008 (3) 0.905 ± .010 (4)
Echocardiogram 0.648 ± .130 (1) 0.543 ± .117 (5) 0.563 ± .099 (3) 0.609 ± .112 (2) 0.559 ± .075 (4)
Wisconsin Breast Cancer 0.902 ± .029 (3) 0.907 ± .037 (1) 0.888 ± .021 (5) 0.896 ± .021 (4) 0.904 ± .025 (2)
Loan House 0.695 ± .035 (1) 0.475 ± .043 (4) 0.461 ± .093 (5) 0.607 ± .045 (3) 0.671 ± .056 (2)
Heart Failure 0.745 ± .063 (2) 0.580 ± .077 (5) 0.740 ± .055 (3) 0.692 ± .062 (4) 0.755 ± .060 (1)
Heart Disease 0.736 ± .069 (1) n > 12 0.704 ± .059 (3) 0.722 ± .065 (2) 0.670 ± .090 (4)
Adult 0.749 ± .028 (2) n > 12 0.478 ± .068 (4) 0.723 ± .011 (3) 0.773 ± .008 (1)
Bank Marketing 0.626 ± .017 (1) n > 12 0.473 ± .002 (4) 0.502 ± .011 (3) 0.616 ± .007 (2)
Congressional Voting 0.953 ± .021 (1) n > 12 0.932 ± .034 (3) 0.924 ± .043 (4) 0.933 ± .032 (2)
Absenteeism 0.620 ± .050 (1) n > 12 0.417 ± .035 (4) 0.587 ± .047 (2) 0.580 ± .045 (3)
Hepatitis 0.609 ± .103 (2) n > 12 0.486 ± .074 (4) 0.586 ± .083 (3) 0.610 ± .123 (1)
German 0.584 ± .057 (2) n > 12 0.412 ± .005 (4) 0.556 ± .035 (3) 0.595 ± .028 (1)
Mushroom 0.997 ± .003 (3) n > 12 0.984 ± .003 (4) 0.999 ± .001 (1) 0.999 ± .001 (2)
Credit Card 0.676 ± .009 (4) n > 12 0.685 ± .004 (1) 0.679 ± .007 (3) 0.679 ± .007 (2)
Horse Colic 0.842 ± .033 (1) n > 12 0.794 ± .042 (2) 0.708 ± .038 (4) 0.758 ± .053 (3)
Thyroid 0.872 ± .015 (2) n > 12 0.476 ± .101 (4) 0.682 ± .018 (3) 0.912 ± .013 (1)
Cervical Cancer 0.496 ± .047 (3) n > 12 0.514 ± .034 (1) 0.488 ± .027 (4) 0.505 ± .033 (2)
Spambase 0.893 ± .015 (2) n > 12 0.864 ± .014 (3) 0.863 ± .011 (4) 0.917 ± .011 (1)
Mean ↑ 0.764 ± .144 (1) - 0.678 ± .197 (4) 0.723 ± .154 (3) 0.747 ± .153 (2)
Mean Reciprocal Rank (MRR) ↑ 0.670 ± .289 (1) 0.306 ± .262 (5) 0.427 ± .287 (3) 0.371 ± .164 (4) 0.571 ± .318 (2)

Iris 0.938 ± .039 (1) 0.870 ± .051 (5) 0.912 ± .038 (3) 0.909 ± .046 (4) 0.937 ± .036 (2)
Balance Scale 0.575 ± .031 (2) 0.542 ± .062 (3) 0.539 ± .026 (4) 0.525 ± .039 (5) 0.581 ± .025 (1)
Car 0.389 ± .062 (3) 0.426 ± .065 (2) 0.321 ± .069 (4) 0.273 ± .063 (5) 0.571 ± .133 (1)
Glass 0.484 ± .099 (5) 0.498 ± .096 (4) 0.566 ± .152 (2) 0.501 ± .100 (3) 0.668 ± .085 (1)
Contraceptive 0.472 ± .039 (1) 0.324 ± .045 (3) 0.311 ± .053 (4) 0.292 ± .036 (5) 0.450 ± .064 (2)
Solar Flare 0.145 ± .017 (3) 0.142 ± .025 (5) 0.150 ± .026 (2) 0.144 ± .034 (4) 0.180 ± .026 (1)
Wine 0.895 ± .035 (3) 0.853 ± .042 (4) 0.898 ± .041 (2) 0.852 ± .022 (5) 0.907 ± .042 (1)
Zoo 0.827 ± .162 (3) n > 12 0.802 ± .094 (4) 0.911 ± .106 (2) 0.943 ± .076 (1)
Lymphography 0.472 ± .192 (3) n > 12 0.397 ± .211 (4) 0.574 ± .196 (2) 0.606 ± .176 (1)
Segment 0.921 ± .014 (2) n > 12 0.736 ± .064 (4) 0.808 ± .013 (3) 0.950 ± .006 (1)
Dermatology 0.876 ± .041 (3) n > 12 0.818 ± .161 (4) 0.885 ± .036 (2) 0.951 ± .024 (1)
Landsat 0.791 ± .012 (2) n > 12 0.647 ± .054 (4) 0.783 ± .008 (3) 0.835 ± .011 (1)
Annealing 0.632 ± .155 (3) n > 12 0.198 ± .050 (4) 0.787 ± .121 (2) 0.873 ± .092 (1)
Splice 0.869 ± .017 (2) n > 12 0.611 ± .095 (3) > 60 min 0.878 ± .028 (1)
Mean ↑ 0.638 ± .244 (2) - 0.565 ± .256 (4) 0.634 ± .268 (3) 0.738 ± .235 (1)
Mean Reciprocal Rank (MRR) ↑ 0.470 ± .239 (2) 0.295 ± .106 (5) 0.315 ± .104 (4) 0.331 ± .128 (3) 0.929 ± .182 (1)

Table 7: Performance Comparison Default Hyperparameters. We report macro F1-scores (mean ± stdev over 10 trials) with
default parameters. We also report the rank of each approach in brackets. The datasets are sorted by the number of features. The
top part comprises binary classification tasks and the bottom part multi-class datasets.



B.3 Train Data Performance

Gradient-Based Non-Greedy Greedy

GradTree (ours) DNDT GeneticTree DL8.5 (Optimal) CART

Blood Transfusion 0.686 ± .032 (3) 0.552 ± .085 (5) 0.615 ± .122 (4) 0.711 ± .045 (2) 0.832 ± .040 (1)
Banknote Authentication 0.995 ± .003 (2) 0.907 ± .012 (5) 0.933 ± .016 (4) 0.967 ± .003 (3) 0.999 ± .001 (1)
Titanic 0.761 ± .128 (5) 0.791 ± .025 (4) 0.908 ± .023 (3) 0.970 ± .006 (1) 0.949 ± .012 (2)
Raisins 0.892 ± .024 (1) 0.829 ± .027 (5) 0.863 ± .004 (4) 0.889 ± .004 (2) 0.866 ± .004 (3)
Rice 0.925 ± .003 (3) 0.913 ± .012 (5) 0.920 ± .002 (4) 0.930 ± .002 (1) 0.927 ± .002 (2)
Echocardiogram 0.827 ± .088 (4) 0.817 ± .034 (5) 0.844 ± .032 (3) 0.935 ± .013 (2) 0.981 ± .009 (1)
Wisconsin Breast Cancer 0.947 ± .015 (2) 0.936 ± .015 (3) 0.907 ± .009 (5) 0.964 ± .005 (1) 0.915 ± .006 (4)
Loan House 0.735 ± .009 (4) 0.712 ± .010 (5) 0.897 ± .012 (3) 0.969 ± .006 (1) 0.938 ± .009 (2)
Heart Failure 0.785 ± .038 (4) 0.773 ± .053 (5) 0.795 ± .024 (3) 0.912 ± .008 (1) 0.818 ± .021 (2)
Heart Disease 0.851 ± .027 (4) n > 12 0.902 ± .020 (3) 0.990 ± .005 (1) 0.964 ± .010 (2)
Adult 0.875 ± .050 (4) n > 12 0.932 ± .013 (3) 0.967 ± .001 (2) 0.973 ± .001 (1)
Bank Marketing 0.603 ± .029 (4) n > 12 0.971 ± .003 (3) 0.981 ± .001 (2) 0.984 ± .001 (1)
Congressional Voting 0.971 ± .019 (4) n > 12 0.978 ± .005 (3) 1.000 ± .001 (2) 1.000 ± .000 (1)
Absenteeism 0.778 ± .050 (4) n > 12 0.842 ± .011 (3) 0.920 ± .009 (2) 0.952 ± .008 (1)
Hepatitis 0.931 ± .038 (4) n > 12 0.967 ± .011 (3) 1.000 ± .000 (1) 0.998 ± .003 (2)
German 0.589 ± .048 (4) n > 12 0.891 ± .010 (3) 0.958 ± .002 (1) 0.940 ± .013 (2)
Mushroom 1.000 ± .000 (1) n > 12 0.993 ± .005 (4) 1.000 ± .000 (1) 1.000 ± .000 (1)
Credit Card 0.651 ± .020 (4) n > 12 0.691 ± .002 (3) 0.710 ± .003 (2) 0.758 ± .008 (1)
Horse Colic 0.882 ± .033 (4) n > 12 0.913 ± .019 (3) 1.000 ± .000 (1) 0.963 ± .008 (2)
Thyroid 0.914 ± .012 (4) n > 12 0.927 ± .014 (3) 0.937 ± .002 (2) 0.987 ± .002 (1)
Cervical Cancer 0.593 ± .128 (4) n > 12 0.691 ± .046 (3) 0.767 ± .020 (2) 0.925 ± .027 (1)
Spambase 0.905 ± .020 (2) n > 12 0.858 ± .020 (4) 0.879 ± .002 (3) 0.965 ± .003 (1)
Mean ↑ 0.823 ± .132 (4) - 0.874 ± .098 (3) 0.925 ± .087 (2) 0.938 ± .065 (1)
Mean Reciprocal Rank (MRR) ↑ 0.358 ± .226 (3) 0.220 ± .045 (5) 0.305 ± .044 (4) 0.712 ± .263 (2) 0.754 ± .282 (1)

Iris 0.978 ± .017 (2) 0.926 ± .030 (5) 0.947 ± .008 (4) 0.996 ± .004 (1) 0.973 ± .010 (3)
Balance Scale 0.793 ± .034 (2) 0.602 ± .142 (5) 0.665 ± .034 (4) 0.700 ± .022 (3) 0.932 ± .010 (1)
Car 0.807 ± .048 (4) 0.681 ± .087 (5) 0.863 ± .055 (3) 0.885 ± .029 (2) 0.974 ± .010 (1)
Glass 0.785 ± .045 (4) 0.804 ± .020 (3) 0.699 ± .049 (5) 0.837 ± .009 (2) 0.978 ± .007 (1)
Contraceptive 0.545 ± .067 (5) 0.591 ± .105 (4) 0.723 ± .030 (3) 0.822 ± .016 (2) 0.865 ± .018 (1)
Solar Flare 0.833 ± .090 (3) 0.729 ± .080 (5) 0.794 ± .123 (4) 0.904 ± .047 (2) 0.943 ± .061 (1)
Wine 0.995 ± .009 (3) 0.996 ± .006 (2) 0.931 ± .019 (5) 0.978 ± .004 (4) 1.000 ± .000 (1)
Zoo 0.990 ± .029 (3) n > 12 0.831 ± .129 (4) 1.000 ± .000 (1) 1.000 ± .000 (2)
Lymphography 0.974 ± .018 (2) n > 12 0.915 ± .072 (4) 0.957 ± .130 (3) 0.988 ± .004 (1)
Segment 0.959 ± .005 (2) n > 12 0.715 ± .109 (4) 0.799 ± .003 (3) 0.987 ± .002 (1)
Dermatology 0.965 ± .014 (2) n > 12 0.792 ± .110 (4) 0.954 ± .007 (3) 0.986 ± .005 (1)
Landsat 0.824 ± .010 (2) n > 12 0.630 ± .083 (4) 0.792 ± .004 (3) 0.939 ± .005 (1)
Annealing 0.885 ± .089 (4) n > 12 0.974 ± .013 (3) 0.999 ± .001 (2) 0.999 ± .001 (1)
Splice 0.886 ± .026 (2) n > 12 0.783 ± .062 (3) > 60 min 0.992 ± .004 (1)
Mean ↑ 0.873 ± .123 (3) - 0.804 ± .110 (4) 0.894 ± .097 (2) 0.968 ± .038 (1)
Mean Reciprocal Rank (MRR) ↑ 0.389 ± .121 (3) 0.269 ± .113 (4) 0.267 ± .047 (5) 0.494 ± .242 (2) 0.952 ± .178 (1)

Table 8: Train Performance Comparison. We report macro F1-scores (mean± stdev over 10 trials) on the training data. We also
report the rank of each approach in brackets. The datasets are sorted by the number of features. The top part comprises binary
classification tasks and the bottom part multi-class datasets.



B.4 Tree Size Comparison

Gradient-Based Non-Greedy Greedy

GradTree (ours) DNDT GeneticTree DL8.5 (Optimal) CART

Blood Transfusion 29.20 ± 8.22 (3) 24.00 ± 0.00 (2) 5.20 ± 3.03 (1) 24.00 ± 1.61 (3) 165.60 ± 21.84 (5)
Banknote Authentication 60.00 ± 11.22 (5) 24.00 ± 0.00 (2) 12.80 ± 5.33 (1) 26.80 ± 0.60 (3) 44.80 ± 4.69 (4)
Titanic 39.60 ± 10.17 (3) 142.00 ± 0.00 (5) 10.40 ± 3.11 (1) 28.20 ± 0.98 (3) 21.60 ± 0.92 (2)
Raisins 114.80 ± 33.69 (4) 142.00 ± 0.00 (5) 3.60 ± 1.80 (2) 29.40 ± 1.50 (3) 3.00 ± 0.00 (1)
Rice 41.00 ± 10.05 (4) 142.00 ± 0.00 (5) 3.00 ± 0.00 (2) 30.20 ± 0.98 (3) 3.00 ± 0.00 (1)
Echocardiogram 43.20 ± 12.82 (4) 272.00 ± 0.00 (5) 9.00 ± 3.10 (1) 30.00 ± 1.34 (2) 36.20 ± 5.81 (3)
Wisconsin Breast Cancer 61.80 ± 13.36 (4) 1,044.00 ± 0.00 (5) 4.00 ± 1.61 (2) 29.40 ± 0.80 (3) 3.00 ± 0.00 (1)
Loan House 19.20 ± 5.25 (2) 2,070.00 ± 0.00 (5) 6.80 ± 2.75 (1) 28.20 ± 1.33 (4) 26.20 ± 2.04 (3)
Heart Failure 27.20 ± 9.44 (3) 4,120.00 ± 0.00 (5) 3.20 ± 0.60 (1) 30.80 ± 0.60 (4) 14.20 ± 0.98 (2)
Heart Disease 36.80 ± 7.45 (4) n > 12 11.00 ± 4.10 (1) 27.60 ± 1.56 (3) 24.60 ± 3.07 (2)
Adult 128.00 ± 37.19 (3) n > 12 9.40 ± 4.96 (1) 25.20 ± 0.60 (2) 156.60 ± 23.08 (4)
Bank Marketing 6.80 ± 3.03 (2) n > 12 3.40 ± 1.20 (1) 27.20 ± 2.27 (3) 110.60 ± 10.50 (4)
Congressional Voting 5.60 ± 2.38 (2) n > 12 5.60 ± 0.92 (1) 20.40 ± 6.70 (4) 19.20 ± 6.42 (3)
Absenteeism 148.80 ± 18.19 (4) n > 12 7.80 ± 0.98 (1) 30.60 ± 0.80 (2) 43.20 ± 2.75 (3)
Hepatitis 12.20 ± 3.60 (2) n > 12 5.80 ± 2.71 (1) 14.80 ± 2.09 (4) 12.60 ± 1.74 (3)
German 27.60 ± 4.10 (2) n > 12 6.20 ± 0.98 (1) 30.40 ± 0.92 (3) 34.60 ± 5.71 (4)
Mushroom 25.60 ± 5.73 (4) n > 12 5.20 ± 1.66 (1) 21.20 ± 2.75 (3) 14.00 ± 1.34 (2)
Credit Card 92.60 ± 39.64 (3) n > 12 3.00 ± 0.00 (1) 31.00 ± 0.00 (2) 354.80 ± 31.60 (4)
Horse Colic 22.40 ± 4.74 (3) n > 12 4.00 ± 1.61 (1) 29.40 ± 1.20 (4) 12.60 ± 1.20 (2)
Thyroid 96.80 ± 16.86 (4) n > 12 5.60 ± 1.80 (1) 30.60 ± 0.80 (2) 66.40 ± 4.65 (3)
Cervical Cancer 34.00 ± 23.67 (3) n > 12 14.00 ± 7.55 (1) 30.80 ± 0.60 (2) 99.00 ± 8.53 (4)
Spambase 120.20 ± 37.01 (3) n > 12 12.40 ± 5.80 (1) 29.600 ± 0.917 (2) 201.00 ± 14.64 (4)

Mean ↑ 54.245 ± 42.82 (3) 886.67 ± 1,387.86 (5) 6.88 ± 3.46 (1) 27.54 ± 4.15 (2) 66.67 ± 86.22 (4)
Mean Reciprocal Rank (MRR) ↑ 0.33 ± 0.10 (4) 0.27 ± 0.13 (5) 0.93 ± 0.18 (1) 0.37 ± 0.10 (3) 0.43 ± 0.25 (2)

Iris 14.40 ± 2.54 (3) 24.00 ± 0.00 (4) 9.00 ± 3.10 (1) 29.20 ± 1.40 (5) 9.40 ± 1.50 (2)
Balance Scale 118.60 ± 27.10 (4) 24.00 ± 0.00 (1) 25.40 ± 11.31 (2) 31.00 ± 0.00 (3) 161.20 ± 8.92 (5)
Car 47.00 ± 13.57 (3) 76.00 ± 0.00 (5) 32.60 ± 21.35 (1) 29.80 ± 0.98 (2) 57.00 ± 13.02 (4)
Glass 56.80 ± 11.01 (3) 530.00 ± 0.00 (5) 21.80 ± 11.53 (1) 30.60 ± 0.80 (2) 68.00 ± 6.34 (4)
Contraceptive 40.60 ± 11.48 (3) 530.00 ± 0.00 (5) 12.80 ± 3.84 (1) 30.00 ± 1.34 (2) 48.60 ± 7.14 (4)
Solar Flare 49.80 ± 9.30 (4) 1,044.00 ± 0.00 (5) 38.40 ± 21.41 (3) 26.80 ± 3.28 (1) 32.00 ± 3.13 (2)
Wine 24.00 ± 4.12 (3) 4,120.00 ± 0.00 (5) 11.20 ± 4.77 (1) 28.20 ± 1.60 (4) 13.40 ± 2.33 (2)
Zoo 25.00 ± 3.90 (3) n > 12 32.60 ± 19.30 (4) 24.60 ± 0.80 (2) 18.00 ± 1.34 (1)
Lymphography 36.20 ± 6.34 (4) n > 12 14.40 ± 6.82 (1) 27.00 ± 1.27 (3) 16.80 ± 1.89 (2)
Segment 133.00 ± 21.85 (4) n > 12 24.40 ± 11.42 (1) 31.00 ± 0.00 (2) 79.60 ± 3.80 (3)
Dermatology 33.60 ± 7.27 (4) n > 12 20.00 ± 7.76 (1) 28.00 ± 1.84 (2) 28.00 ± 1.84 (2)
Landsat 360.60 ± 21.12 (3) n > 12 16.00 ± 7.34 (1) 31.00 ± 0.00 (2) 425.60 ± 18.53 (4)
Annealing 19.60 ± 2.84 (2) n > 12 12.60 ± 3.32 (1) 28.40 ± 2.01 (4) 24.40 ± 2.01 (3)
Splice 247.40 ± 53.00 (3) n > 12 11.80 ± 6.40 (1) n > 12 81.40 ± 10.69 (2)

Mean ↑ 86.19 ± 101.07 (4) 906.86 ± 1,464.94 (5) 20.21 ± 9.31 (1) 28.95 ± 1.98 (2) 75.96 ± 108.42 (3)
Mean Reciprocal Rank (MRR) ↑ 0.32 ± 0.07 (5) 0.32 ± 0.30 (4) 0.86 ± 0.28 (1) 0.45 ± 0.20 (2) 0.42 ± 0.21 (3)

Table 9: Tree Size Comparison. We report the average tree size based on the optimized hyperparameters (mean ± stdev over
10 trials). We also report the rank of each approach in brackets. The datasets are sorted by the number of features. The top part
comprises binary classification tasks and the bottom part multi-class datasets.



B.5 Runtime Comparison

Gradient-Based Non-Greedy Greedy

GradTree (ours) DNDT GeneticTree DL8.5 (Optimal) CART

Blood Transfusion 13.01 ± 1.00 (5) 3.70 ± 1.00 (3) 10.51 ± 4.00 (4) 0.03 ± 0.00 (2) 0.00 ± 0.00 (1)
Banknote Authentication 13.21 ± 2.00 (4) 34.43 ± 1.00 (5) 10.32 ± 3.00 (3) 0.03 ± 0.00 (2) 0.00 ± 0.00 (1)
Titanic 29.58 ± 1.00 (5) 6.82 ± 0.00 (4) 3.68 ± 1.00 (3) 0.26 ± 0.00 (2) 0.00 ± 0.00 (1)
Raisins 30.61 ± 2.00 (5) 8.50 ± 1.00 (4) 0.62 ± 0.00 (3) 0.20 ± 0.00 (2) 0.00 ± 0.00 (1)
Rice 21.49 ± 4.00 (5) 11.96 ± 1.00 (4) 1.33 ± 0.00 (3) 0.48 ± 0.00 (2) 0.01 ± 0.00 (1)
Echocardiogram 9.04 ± 1.00 (4) 9.56 ± 2.00 (5) 0.30 ± 0.00 (3) 0.09 ± 0.00 (2) 0.00 ± 0.00 (1)
Wisconsin Breast Cancer 29.25 ± 2.00 (5) 6.84 ± 1.00 (4) 1.19 ± 0.00 (3) 0.46 ± 0.00 (2) 0.00 ± 0.00 (1)
Loan House 10.80 ± 1.00 (4) 52.79 ± 7.00 (5) 6.75 ± 2.00 (3) 0.52 ± 0.00 (2) 0.00 ± 0.00 (1)
Heart Failure 28.40 ± 1.00 (5) 23.75 ± 10.00 (4) 1.47 ± 0.00 (3) 0.20 ± 0.00 (2) 0.00 ± 0.00 (1)
Heart Disease 15.57 ± 2.00 (4) n > 12 4.45 ± 1.00 (3) 0.64 ± 0.00 (2) 0.00 ± 0.00 (1)
Adult 86.24 ± 12.00 (4) n > 12 26.01 ± 7.00 (3) 22.32 ± 1.00 (2) 0.07 ± 0.00 (1)
Bank Marketing 153.49 ± 38.00 (4) n > 12 129.43 ± 8.00 (3) 54.55 ± 1.00 (2) 0.07 ± 0.00 (1)
Congressional Voting 32.94 ± 3.00 (4) n > 12 6.50 ± 1.00 (3) 4.10 ± 7.00 (2) 0.00 ± 0.00 (1)
Absenteeism 28.94 ± 1.00 (4) n > 12 14.05 ± 3.00 (3) 3.89 ± 0.00 (2) 0.00 ± 0.00 (1)
Hepatitis 28.43 ± 1.00 (4) n > 12 2.27 ± 1.00 (3) 0.02 ± 0.00 (2) 0.00 ± 0.00 (1)
German 12.31 ± 2.00 (4) n > 12 3.14 ± 1.00 (2) 10.29 ± 0.00 (3) 0.00 ± 0.00 (1)
Mushroom 58.81 ± 70.00 (4) n > 12 12.51 ± 2.00 (3) 0.51 ± 0.00 (2) 0.01 ± 0.00 (1)
Credit Card 111.43 ± 36.00 (3) n > 12 4.42 ± 0.00 (2) 298.57 ± 6.00 (4) 0.35 ± 0.00 (1)
Horse Colic 9.81 ± 1.00 (4) n > 12 0.32 ± 0.00 (2) 2.37 ± 2.00 (3) 0.00 ± 0.00 (1)
Thyroid 35.97 ± 13.00 (2) n > 12 38.29 ± 15.00 (3) 109.12 ± 3.00 (4) 0.01 ± 0.00 (1)
Cervical Cancer 13.47 ± 2.00 (4) n > 12 2.76 ± 1.00 (3) 0.13 ± 0.00 (2) 0.01 ± 0.00 (1)
Spambase 41.98 ± 5.00 (4) n > 12 19.29 ± 6.00 (3) 4.58 ± 0.00 (2) 0.04 ± 0.00 (1)
Mean ↑ 44.75 ± 38.66 (4) - 13.62 ± 27.54 (2) 23.33 ± 66.45 (3) 0.03 ± 0.08 (1)
Mean Reciprocal Rank (MRR) ↑ 0.24 ± 0.04 (4) 0.24 ± 0.042 (5) 0.35 ± 0.06 (3) 0.46 ± 0.08 (2) 1.00 ± 0.00 (1)

Iris 7.25 ± 1.00 (5) 2.96 ± 0.00 (4) 0.97 ± 0.00 (3) 0.02 ± 0.00 (2) 0.00 ± 0.00 (1)
Balance Scale 11.61 ± 2.00 (5) 10.12 ± 9.00 (4) 8.18 ± 1.00 (3) 0.04 ± 0.00 (2) 0.00 ± 0.00 (1)
Car 23.72 ± 3.00 (3) 46.91 ± 43.00 (5) 29.69 ± 10.00 (4) 0.24 ± 0.00 (2) 0.01 ± 0.00 (1)
Glass 30.14 ± 2.00 (5) 5.49 ± 0.00 (3) 12.98 ± 5.00 (4) 0.18 ± 0.00 (2) 0.00 ± 0.00 (1)
Contraceptive 13.17 ± 2.00 (5) 12.67 ± 2.00 (4) 3.95 ± 1.00 (3) 0.26 ± 0.00 (2) 0.00 ± 0.00 (1)
Solar Flare 22.11 ± 2.00 (4) 25.65 ± 3.00 (5) 14.73 ± 2.00 (3) 0.54 ± 0.00 (2) 0.00 ± 0.00 (1)
Wine 30.10 ± 1.00 (4) 58.49 ± 10.00 (5) 0.13 ± 0.00 (2) 0.54 ± 0.00 (3) 0.00 ± 0.00 (1)
Zoo 19.26 ± 7.00 (4) n > 12 9.56 ± 3.00 (3) 0.02 ± 0.00 (2) 0.00 ± 0.00 (1)
Lymphography 7.89 ± 1.00 (4) n > 12 4.36 ± 1.00 (3) 0.14 ± 0.00 (2) 0.00 ± 0.00 (1)
Segment 16.18 ± 3.00 (4) n > 12 2.97 ± 1.00 (2) 14.32 ± 1.00 (3) 0.02 ± 0.00 (1)
Dermatology 9.91 ± 3.00 (3) n > 12 1.72 ± 1.00 (2) 20.71 ± 6.00 (4) 0.00 ± 0.00 (1)
Landsat 38.13 ± 11.00 (3) n > 12 33.83 ± 11.00 (2) 830.06 ± 9.00 (4) 0.05 ± 0.00 (1)
Annealing 36.19 ± 3.00 (3) n > 12 1.36 ± 0.00 (2) 104.57 ± 24.00 (4) 0.01 ± 0.00 (1)
Splice 19.20 ± 2.00 (3) n > 12 2.88 ± 1.00 (2) > 60 min 0.02 ± 0.00 (1)
Mean ↑ 20.35 ± 10.21 (3) - 9.09 ± 10.63 (2) 74.74 ± 228.75 (4) 0.01 ± 0.01 (1)
Mean Reciprocal Rank (MRR) ↑ 0.27 ± 0.06 (4) 0.24 ± 0.05 (5) 0.39 ± 0.10 (2) 0.38 ± 0.13 (3) 1.00 ± 0.00 (1)

Table 10: Runtime Comparison. We report runtime without restarts based on the optimized hyperparameters (mean ± stdev
over 10 trials). We also report the rank of each approach in brackets. The datasets are sorted by the number of features. The top
part comprises binary classification tasks and the bottom part multi-class datasets.



C Hyperparameters

In the following, we report the hyperparameters used for each approach. The hyperparameters were selected based on a random
search over a predefined parameter range for GradTree, CART and GeneticTree and are summarized in Table 12 to Table 15.
All parameters that were considered are noted in the tables. The number of trials (300) was equal for each approach. For
GradTree and DNDT, we did not optimize the batch size as well as the number of epochs, but used early stopping with
a predefined patience of 200. Additionally, we used 3 random restarts to prevent bad initial parametrizations and selected
the best model based on the validation loss. A gradient-based optimization allows using an arbitrary loss function for the
optimization. During preliminary experiments, we observed that it is beneficial to adjust the loss function for specific datasets.
More specifically, we allowed adjusting the cross-entropy loss by adding a focal factor (Lin et al. 2017) of 3. Additionally, we
considered using PolyLoss (Leng et al. 2022) within the HPO to tailor the loss function for the specific task. For GeneticTree,
we used a complexity penalty as it is commonly used in genetic algorithms. This has a strong impact on the tree size of the
learned DT and can explain the small complexity of GeneticTree. To ensure that this complexity penalty does have a significant
impact on the performance of the method, we conducted an additional experiment comparing GeneticTree with and without
complexity penalty (see Table 11). Removing the complexity penalty in the genetic algorithm resulted in a small increase of
the average performance to 0.713 (GradTree 0.758) for binary and 0.573 (GradTree 0.619) for multi-class. However, removing
the complexity penalty also led to a significant increase in the tree size (e.g. from 7 to 1,600 for binary classification). Thus,
interpretability of the models is substantially reduced and runtimes substantially increased. Most importantly, the change in the
performance does not impact the overall results: When excluding the complexity penalty of the genetic benchmark completely,
the relative performance of the methods (number of wins and rank) remained unchanged. For DL8.5 the relevant tunable
hyperparameters according to the authors are the maximum depth and the minimum support. However, the maximum depth
strongly impacts the runtime, which is why we fixed the maximum depth to 4, similar to the maximum depth used during the
experiments of Demirović et al. (2022) and Aglin, Nijssen, and Schaus (2020). Running the experiments with a higher depth
becomes infeasible for many datasets. In preliminary experiments, we also observed that changing the depth does not have
a positive impact on the performance (e.g. increasing the depth to 5 results in a decrease in the test performance). Similarly,
reducing the depth resulted in a reduced performance. Furthermore, to assure a fair comparison, we fixed the minimum support
to 1 which is equal to the pruning of GradTree. Additionally, we observed in our preliminary experiments, that increasing the
minimum support reduces overfitting, but has no positive impact on the test performance (i.e. the train performance decreases,
but the test performance is not improved). For DNDT, the number of cut points is the tunable hyperparameter of the model,
according to Yang, Morillo, and Hospedales (2018). However, it has to be restricted to 1 in order to generate binary trees for
comparability reasons. Therefore, we only optimized the temperature and the learning rate. Furthermore, we extended their
implementation to use early stopping based on the validation loss, similar to GradTree, to reduce the runtime and prevent
overfitting. Further details can be found in our implementation.

Binary Multi

Penalty No Penalty Penalty No Penalty

F1-Score 0.671 0.713 0.546 0.573
Tree Size 7 1,600 20 2,201

Table 11: GeneticTree Comparison. We compare GeneticTree with and without complexity penalty.



Dataset Name depth lr index lr values lr leaf index activation loss polyLoss polyLossEpsilon

Blood Transfusion 8 0.010 0.100 0.010 entmax crossentropy False 2
Banknote Authentication 7 0.050 0.050 0.100 entmax focal crossentropy True 2
Titanic 10 0.005 0.010 0.010 entmax crossentropy False 2
Raisins 10 0.005 0.005 0.100 entmax crossentropy True 5
Rice 7 0.050 0.010 0.010 entmax crossentropy False 2
Echocardiogram 8 0.010 0.050 0.100 entmax crossentropy True 5
Wisconsin Diagnostic Breast Cancer 10 0.050 0.010 0.100 entmax crossentropy True 2
Loan House 8 0.005 0.100 0.010 entmax focal crossentropy False 2
Heart Failure 10 0.005 0.250 0.100 entmax crossentropy False 2
Heart Disease 9 0.010 0.050 0.005 entmax focal crossentropy False 2
Adult 8 0.050 0.005 0.050 entmax crossentropy True 5
Bank Marketing 8 0.250 0.250 0.050 entmax crossentropy False 2
Cervical Cancer 8 0.005 0.010 0.100 entmax crossentropy True 2
Congressional Voting 10 0.005 0.050 0.010 entmax focal crossentropy True 5
Absenteeism 10 0.050 0.010 0.050 entmax focal crossentropy True 5
Hepatitis 10 0.005 0.050 0.010 entmax focal crossentropy True 5
German 7 0.005 0.050 0.010 entmax crossentropy True 2
Mushroom 9 0.010 0.010 0.050 entmax focal crossentropy False 2
Credit Card 8 0.050 0.100 0.010 entmax focal crossentropy False 2
Horse Colic 8 0.250 0.250 0.010 entmax focal crossentropy False 2
Thyroid 8 0.010 0.010 0.050 entmax crossentropy False 2
Spambase 10 0.005 0.010 0.010 entmax crossentropy False 2

Iris 7 0.005 0.005 0.05 entmax crossentropy False 2
Balance Scale 8 0.050 0.010 0.10 entmax crossentropy True 5
Car 9 0.010 0.010 0.01 entmax focal crossentropy False 2
Glass 10 0.050 0.050 0.05 entmax focal crossentropy True 5
Contraceptive 7 0.010 0.050 0.01 entmax crossentropy False 2
Solar Flare 8 0.005 0.010 0.20 entmax focal crossentropy True 2
Wine 10 0.010 0.050 0.01 entmax focal crossentropy False 2
Zoo 9 0.050 0.010 0.10 entmax focal crossentropy True 2
Lymphography 8 0.050 0.010 0.05 entmax crossentropy True 2
Segment 7 0.005 0.005 0.05 entmax crossentropy False 2
Dermatology 7 0.010 0.010 0.10 entmax crossentropy True 2
Landsat 8 0.005 0.010 0.05 entmax crossentropy True 5
Annealing 10 0.250 0.050 0.01 entmax crossentropy False 2
Splice 9 0.010 0.005 0.05 entmax crossentropy False 2

Table 12: GradTree Hyperparameters

Dataset Name learning rate temperature num cut

Blood Transfusion 0.050 0.100 1
Banknote Authentication 0.001 0.100 1
Titanic 0.050 0.001 1
Raisins 0.050 0.001 1
Rice 0.100 0.010 1
Echocardiogram 0.005 1.000 1
Wisconsin Diagnostic Breast Cancer 0.100 0.010 1
Loan House 0.001 1.000 1
Heart Failure 0.005 1.000 1

Iris 0.050 0.100 1
Balance Scale 0.005 0.100 1
Car 0.010 0.010 1
Glass 0.100 0.010 1
Contraceptive 0.001 0.010 1
Solar Flare 0.050 0.100 1
Wine 0.001 0.100 1

Table 13: DNDT Hyperparameters



Dataset Name n thresholds n trees max iter cross prob mutation prob

Blood Transfusion 10 500 500 1.0 0.2
Banknote Authentication 10 500 500 0.8 0.6
Titanic 10 500 250 0.2 0.3
Raisins 10 100 50 1.0 0.6
Rice 10 100 250 0.4 0.3
Echocardiogram 10 50 100 0.8 0.4
Wisconsin Diagnostic Breast Cancer 10 250 100 0.2 0.7
Loan House 10 500 500 1.0 0.2
Heart Failure 10 500 50 0.4 0.6
Heart Disease 10 400 500 0.6 0.4
Adult 10 100 500 0.6 0.6
Bank Marketing 10 500 250 0.8 0.6
Cervical Cancer 10 100 500 0.4 0.9
Congressional Voting 10 500 500 1.0 0.7
Absenteeism 10 500 500 1.0 0.7
Hepatitis 10 500 250 0.2 0.3
German 10 250 500 0.4 0.8
Mushroom 10 400 500 0.6 0.4
Credit Card 10 50 50 0.4 0.1
Horse Colic 10 50 100 0.8 0.4
Thyroid 10 500 500 1.0 0.7
Spambase 10 250 500 0.8 0.6

Iris 10 100 500 1.0 0.5
Balance Scale 10 500 250 0.6 0.4
Car 10 500 500 1.0 0.7
Glass 10 500 500 0.8 0.6
Contraceptive 10 250 500 0.4 0.5
Solar Flare 10 500 250 0.6 0.4
Wine 10 100 50 0.2 0.8
Zoo 10 500 500 1.0 0.7
Lymphography 10 500 250 0.6 0.4
Segment 10 100 500 0.4 0.9
Dermatology 10 100 500 1.0 0.5
Landsat 10 500 500 1.0 0.7
Annealing 10 100 500 0.4 0.9
Splice 10 100 250 0.2 0.8

Table 14: GeneticTree Hyperparameters



Dataset Name max depth criterion max features min samples leaf min samples split ccp alpha

Blood Transfusion 9 entropy None 1 5 0.0
Banknote Authentication 9 gini None 1 5 0.0
Titanic 7 entropy None 1 50 0.0
Raisins 8 gini None 5 2 0.2
Rice 8 gini None 5 2 0.2
Echocardiogram 9 entropy None 1 5 0.0
Wisconsin Breast Cancer 7 entropy None 5 2 0.4
Loan House 10 entropy None 10 2 0.0
Heart Failure 9 gini None 5 50 0.0
Heart Disease 8 entropy None 5 10 0.0
Adult 10 entropy None 10 2 0.0
Bank Marketing 8 entropy None 5 10 0.0
Cervical Cancer 9 entropy None 1 5 0.0
Congressional Voting 10 gini None 1 2 0.0
Absenteeism 7 entropy None 1 10 0.0
Hepatitis 9 entropy None 1 5 0.0
German 7 entropy None 1 10 0.0
Mushroom 9 entropy None 1 5 0.0
Credit Card 9 gini None 1 5 0.0
Horse Colic 10 entropy None 10 2 0.0
Thyroid 10 entropy None 10 2 0.0
Spambase 10 gini None 1 2 0.0

Iris 8 entropy None 5 10 0.0
Balance Scale 9 entropy None 1 5 0.0
Car 9 gini None 1 5 0.0
Glass 9 gini None 1 5 0.0
Contraceptive 9 entropy None 1 5 0.0
Solar Flare 7 entropy None 1 50 0.0
Wine 9 gini None 1 5 0.0
Zoo 10 gini None 1 2 0.0
Lymphography 7 entropy None 1 10 0.0
Segment 9 entropy None 1 5 0.0
Dermatology 9 gini None 1 5 0.0
Landsat 10 gini None 1 2 0.0
Annealing 9 gini None 1 5 0.0
Splice 9 gini None 1 5 0.0

Table 15: CART Hyperparameters

D Datasets

The datasets along with their specifications and source are summarized in Table 16. For all datasets, we performed a standard
preprocessing: We applied Leave-one-out encoding to all categorical features. Similar to Popov, Morozov, and Babenko (2019),
we further perform a quantile transform, making each feature follows a normal distribution. We use a random 80%/20% train-
test split for all datasets. To account for class imbalance, we rebalanced the training data using SMOTE (Chawla et al. 2002)
when the minority class accounts for less than 25

c−1% of the data points, where c is the number of classes. Since GradTree
and DNDT require a validation set for early stopping, we performed another 80%/20% split on the training data for those
approaches. The remainder of the approaches utilize the complete training data. For DL8.5 additional preprocessing was neces-
sary since they can only handle binary features. Therefore, we one-hot encoded all categorical features and discretized numeric
features by one-hot encoding them using quantile binning with 5 bins.



Dataset Name Number of
Features

Number of
Samples Samples by Class Number of

Classes Link

Blood Transfusion 4 748 178 / 570 2 https://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+
Service+Center

Banknote
Authentication 4 1372 610 / 762 2 https://archive.ics.uci.edu/ml/datasets/banknote+authentication

Titanic 7 891 342 / 549 2 https://www.kaggle.com/c/titanic
Raisin 7 900 450 /450 2 https://archive.ics.uci.edu/ml/datasets/Raisin+Dataset

Rice 7 3810 1630 / 2180 2 https://archive.ics.uci.edu/ml/datasets/Rice+%28Cammeo+
and+Osmancik%29

Echocardiogram 8 132 107 / 25 2 https://archive.ics.uci.edu/ml/datasets/echocardiogram
Wisconsin Diagnostic
Breast Cancer 10 569 212 / 357 2 https://archive.ics.uci.edu/ml/datasets/breast+cancer+

wisconsin+(diagnostic)

Loan House 11 614 422 / 192 2 https://www.kaggle.com/code/sazid28/home-loan-
prediction/data

Heart Failure 12 299 96 /203 2 https:
//archive.ics.uci.edu/ml/datasets/Heart+failure+clinical+records

Heart Disease 13 303 164 / 139 2 https://archive.ics.uci.edu/ml/datasets/heart+disease
Adult 14 32561 7841 / 24720 2 https://archive.ics.uci.edu/ml/datasets/adult
Bank Marketing 14 45211 5289 / 39922 2 https://archive.ics.uci.edu/ml/datasets/bank+marketing

Congressional Voting 16 435 267 / 168 2 https:
//archive.ics.uci.edu/ml/datasets/congressional+voting+records

Absenteeism 18 740 279 / 461 2 https://archive.ics.uci.edu/ml/datasets/Absenteeism+at+work
Hepatitis 19 155 32 / 123 2 https://archive.ics.uci.edu/ml/datasets/hepatitis

German 20 1000 300 / 700 2 https:
//archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)

Mushrooms 22 8124 4208 /3916 2 https://archive.ics.uci.edu/ml/datasets/mushroom

Credit Card 23 30000 23364 / 6636 2 https:
//archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients

Horse Colic 26 368 232 / 136 2 https://archive.ics.uci.edu/ml/datasets/Horse+Colic
Thyroid 29 9172 2401 / 6771 2 https://archive.ics.uci.edu/ml/datasets/thyroid+disease

Cervical Cancer 31 858 55 / 803 2 https://archive.ics.uci.edu/ml/datasets/Cervical+cancer+
%28Risk+Factors%29

Spambase 57 4601 1813 / 2788 2 https://archive.ics.uci.edu/ml/datasets/spambase

Iris 4 150 50 / 50 / 50 3 https://archive.ics.uci.edu/ml/datasets/iris
Balance Scale 4 625 49 / 288 / 288 3 https://archive.ics.uci.edu/ml/datasets/balance+scale

Car 6 1728 384 / 69 / 1210 /
65 4 https://archive.ics.uci.edu/ml/datasets/car+evaluation

Glass 9 214 70 / 76 / 17 / 13 /
9 / 29 6 https://archive.ics.uci.edu/ml/datasets/glass+identification

Contraceptive 9 1473 629 / 333 / 511 3 https://archive.ics.uci.edu/ml/datasets/Contraceptive+Method+
Choice

Solar Flare 10 1389 1171 / 141 / 40 /
20 / 9 / 4 / 3 / 1 8 http://archive.ics.uci.edu/ml/datasets/solar+flare

Wine 12 178 59 / 71 / 48 3 https://archive.ics.uci.edu/ml/datasets/wine

Zoo 16 101 41 / 20 / 5 / 13 / 4
/ 8 /10 7 https://archive.ics.uci.edu/ml/datasets/zoo

Lymphography 18 148 2 / 81 /61 /4 4 https://archive.ics.uci.edu/ml/datasets/Lymphography

Segment 19 2310
330 / 330 / 330 /
330 / 330 / 330 /

330
7 https://archive.ics.uci.edu/ml/datasets/image+segmentation

Dermatology 34 366 112 / 61 / 72 / 49
/ 52 / 20 6 https://archive.ics.uci.edu/ml/datasets/dermatology

Landsat 36 6435 1533 / 703 / 1358
/ 626 / 707 /1508 6 https:

//archive.ics.uci.edu/ml/datasets/Statlog+(Landsat+Satellite)

Annealing 38 798 8 / 88 / 608 / 60 /
34 5 https://archive.ics.uci.edu/ml/datasets/Annealing

Splice 60 3190 767 / 768 / 1655 3 https://archive.ics.uci.edu/ml/datasets/Molecular+Biology+
(Splice-junction+Gene+Sequences)

Table 16: Dataset Specifications.
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