
EXPLAINING NEURAL NETWORKS WITHOUT ACCESS TO
TRAINING DATA

A PREPRINT

Sascha Marton
Institute for Enterprise Systems

University of Mannheim
Mannheim, 68161

marton@es.uni-mannheim.de

Stefan Lüdtke
Institute for Enterprise Systems

University of Mannheim
Mannheim, 68161

luedtke@es.uni-mannheim.de

Christian Bartelt
Institute for Enterprise Systems

University of Mannheim
Mannheim, 68161

bartelt@es.uni-mannheim.de

Andrej Tschalzev
Institute for Enterprise Systems

University of Mannheim
Mannheim, 68161

tschalzev@es.uni-mannheim.de

Heiner Stuckenschmidt
Data and Web Science Group

University of Mannheim
Mannheim, 68159

heiner@informatik.uni-mannheim.de

ABSTRACT

We consider generating explanations for neural networks in cases where the network’s training data is
not accessible, for instance due to privacy or safety issues. Recently, I-Nets have been proposed as a
sample-free approach to post-hoc, global model interpretability that does not require access to training
data. They formulate interpretation as a machine learning task that maps network representations
(parameters) to a representation of an interpretable function. In this paper, we extend the I-Net
framework to the cases of standard and soft decision trees as surrogate models. We propose a suitable
decision tree representation and design of the corresponding I-Net output layers. Furthermore,
we make I-Nets applicable to real-world tasks by considering more realistic distributions when
generating the I-Net’s training data. We empirically evaluate our approach against traditional global,
post-hoc interpretability approaches and show that it achieves superior results when the training data
is not accessible.

Keywords Explainable AI (XAI) · Interpretability · Neural Networks · Decision Trees

1 Introduction

Artificial neural networks achieve impressive results for various modeling tasks [LeCun et al., 2015, Wang et al., 2020].
However, a downside of their superior performance and sophisticated structure is the comprehensibility of the learned
models. In many domains, it is crucial to understand the function learned by a neural network, especially when it comes
to decisions that affect people [Samek et al., 2019, Molnar, 2020].

A common approach to tackle the problem of interpretability without sacrificing the superior performance is using
a surrogate model as gateway to interpretability [Molnar, 2020]. Most existing global surrogate approaches use a
distillation procedure to learn the surrogate model based on the predictions of the neural network [Molnar, 2020, Frosst
and Hinton, 2017]. Therefore, they query the neural network based on a representative set of samples and the resulting
input-output pairs are then used to train the surrogate model. This representative sample usually comprises the training
data of the original model, or at least follows its distribution [Molnar, 2020, Lopes et al., 2017]. However, there are
many cases where the training data cannot easily be exposed due to privacy or safety concerns [Lopes et al., 2017,
Bhardwaj et al., 2019, Nayak et al., 2019]. Without having access to the training data, traditional approaches can fail to
provide meaningful explanations since the querying strategy can easily miss dense regions of the training data such that

ar
X

iv
:2

20
6.

04
89

1v
1

 [
cs

.L
G

]
 1

0
Ju

n
20

22

https://orcid.org/0000-0001-8151-9223
https://orcid.org/0000-0002-1488-4236
https://orcid.org/0000-0003-0426-6714
https://orcid.org/0000-0002-0638-5744
https://orcid.org/0000-0002-0209-3859

Explaining Neural Networks without Access to Training Data A PREPRINT

the resulting samples are a poor approximation of the true function, as we will show in the following example.

Example 1. The Credit Card Default dataset [Yeh and Lien, 2009] comprises personal, confidential data which usually
cannot be exposed to external authorities. The task is to predict whether a client will default the payment in the current
month, which can be solved efficiently using neural networks. To gain insight into the decision-making process of the
neural network, we can learn a global surrogate model. Unfortunately, if the training data is not accessible, we can’t
ensure that the neural network is properly queried, and the explanation contains the relevant information when using a
traditional, sample-based distillation.

Figure 1a shows such a scenario, where the explanation generated by a sample-based distillation without training data
contains a misconception: It encodes the rule that we should always predict No Default if the payment amount of
the last month is larger than 373, 000 without taking the payment history of the client into account. This mismatch
between network and surrogate model is also reflected in the low fidelity between the network and surrogate model on
the training data. However, in reality, this fidelity cannot be computed when the training data is not available, such that
these misconceptions might go unnoticed. This can lead to wrong assumptions about what the network actually learned.

Payment Amount
1 Month ago

< 373,000

Fidelity
25.3%

No
DefaultPayment Delayed

< 4.5 Months

DefaultPayment Amount
6 Months ago

< 623,000

Default No
Default

(a) Sample-Based Decision Tree

Fidelity
25.3% Payment Delayed

< 2.5 Months

No
Default

Fidelity
75.8%

Default

(b) I-Net Decision Tree

Figure 1: Explaining Neural Networks for Credit Card Default Prediction. The DT on the left is learned by a
sample-based distillation without access to training data, and the DT on the right is predicted by the I-Net. The I-Net
makes reasonable splits and achieves a significantly higher fidelity on the real data.

As shown in Example 1, knowing the training data is crucial for sample-based methods and without them, it is often not
possible to generate reasonable explanations. Recent approaches tackle this issue by using only a subset of the training
data and/or layer activations to generate a representative set of samples [Lopes et al., 2017, Bhardwaj et al., 2019, Nayak
et al., 2019]. However, they still rely on a proper querying of the model and use a sample-based distillation.

In contrast, the I-Net approach introduced by Marton et al. [2022] is a sample-free approach that only accesses the
network parameters and therefore does not rely on a proper querying. This is achieved by using a second neural network
(the so-called I-Net) which learns a mapping from the network parameters to a human-understandable representation
of the network function. Following this approach, we can generate reasonable explanations, even when the training data
is not accessible, as shown in Figure 1b: The I-Net achieves a high fidelity and the resulting surrogate model encodes
the rule that Default is predicted if the payment for the last month was delayed for more than two months, which is a
reasonable explanation for this scenario.

The I-Net was originally devised for lower-order polynomials as a surrogate model. While polynomials can be
reasonable explanations for regression tasks, they are not well-suited for representing decision boundaries of a
classification task, which is the focus of our paper. In contrast, decision trees (DTs) are frequently used as an
explainable model for classification tasks since they make hierarchical decisions and therefore are easy to comprehend
for humans [Frosst and Hinton, 2017]. In the recent literature, soft DTs (SDTs) are successfully used as interpretable
surrogate models [Frosst and Hinton, 2017]. While SDTs make multivariate splits, they usually achieve a higher fidelity
than standard DTs, but also have a higher level of complexity.

In this paper, we make the following contributions:

• We propose an improved data generation method for the training of an I-Net (Section 3.1.1) which allows
more robust and distribution-independent explanations on real-world datasets.

2

Explaining Neural Networks without Access to Training Data A PREPRINT

• We present an I-Net design that is able to represent standard DTs and SDTs as surrogate model (Section 3.2)
with a high fidelity.

• We introduce univariate SDTs as complexity-fidelity trade-off (Section 3.2.2) and show that they can be
implemented efficiently using the I-Net.

• We empirically evaluate our approach against sample-based approaches for learning standard DTs and SDTs
and show that it achieves superior results when training data is not accessible (Section 4.2).

2 I-Nets as a Sample-Free Approach to Global Model Interpretability

In this section, we summarize the task of explaining neural networks, focusing on the case where the networks’ training
data is not available, followed by a brief introduction to the I-Net approach. For a more in-depth explanation of the
I-Net approach, we refer to Marton et al. [2022].

2.1 Global Explanations for Neural Networks

The general task of globally explaining neural networks can be formalized as finding a function g : X → P (Y |X)
(i.e., a surrogate model) that approximates the decision function of a neural network λ : X → P (Y |X), such that
∀x ∈ X : λ(x) ≈ g(x), where X is a set of feature vectors and Y is a set of classes.

Since the I-Net approach implements a learning task, it is convenient to distinguish between the functions λ and g
and their representations θλ ∈ Θλ and θg ∈ Θg [Marton et al., 2022]. The representation θλ consists of the network
parameters, i.e., the weights and biases of the neural network. Similarly, θg is the parameter vector of the surrogate
model and depends on the selected function family.

The process of generating explanations can be formalized as a function I : Θλ → Θg that maps representations
of λ to representations of g [Marton et al., 2022]. Traditional approaches for generating global surrogate models
post-hoc implement I via a sample-based procedure, as shown in Figure 2 (I-II). They generate a new dataset, where
the labels are obtained by querying λ based on a set of data points. In the next step, a surrogate model is trained
using the generated dataset, maximizing the fidelity between λ and g. As shown by Marton et al. [2022], this process
is time-consuming, which can be a huge drawback if timely explanations are required, as for instance in an online
learning scenario. Additionally, it also strongly depends on the data used for querying the model. Information that is not
properly queried cannot be contained in the explanation, as already shown in Example 1. Therefore, in the literature it is
suggested to use the original train data or data from the same distribution for querying the model [Molnar, 2020, Lopes
et al., 2017], which usually yields to meaningful explanations as depicted in I in Figure 2. However, if the training data
is not accessible or not existing anymore, the model has to be queried based on some sampled data (II in Figure 2). In
this case, it is often not possible to generate meaningful explanations with sample-based approaches, since we cannot
ensure a proper querying and therefore the explanation does not necessarily focus on the relevant aspects.

2.2 Reasonable Explanations

In the following, we discuss what constitutes a meaningful explanation for a neural network. In general, the decision
boundary of the surrogate model should closely match the decision boundary of the network we want to interpret
to achieve a high fidelity. However, we argue that it is necessary to also take the data distribution into account: A
decision boundary should assign as many samples as possible to the correct class. Therefore, it is crucial that the
decision boundary is composed correctly in the areas where many samples are located. Accordingly, for a reasonable
explanation, the decision boundary should match the model we want to interpret especially in regions where many
samples are located, while it is less important that the decision boundaries match in regions with low data density. In
other words, we are less interested in an explanation that shows us how the model behaves when making predictions on
data points that do not occur in reality. This concept is visualized in Figure 3. In Section 4.2.1, we show that traditional,
sample-based approaches cannot generate such reasonable explanations when the training data is not available.

2.3 Explanations for Neural Networks by Neural Networks

To renounce the dependency on a proper querying of the model, we can implement I as a neural network as proposed
by Marton et al. [2022]. Therefore, we transform the task of explaining neural networks into a machine learning task, as
shown in Figure 2 III. The concept of I-Nets is depicted more detailed in Figure 4 and involves two major steps:

1. We train a set of neural networks on synthetic data and extract their learned parameters.
2. We train a second neural network, the I-Net, using the parameters extracted in the first step as input data.

3

Explaining Neural Networks without Access to Training Data A PREPRINT

Neural Network

Learn
Neural Network

Decision Tree

Network
Parameters

I-Net

III.

Query Network
to obtain DT input

Decision Tree

II.

Learn
Decision Tree

Query Network
using train data

to obtain DT input

Learn
Decision Tree

Decision Tree

I.

Figure 2: Sample-Based and I-Net Approach. Sample-based approaches query the target network based on a set of
data points. Using the train data to query the network (I) usually generates a meaningful explanation. If the training
data is not available, we have to query the network based on randomly sampled data, e.g., from a uniform distribution
(II), which often cannot generate a meaningful explanation since relevant parts are not queried properly. The I-Net
uses the network parameters as an input to generate a reasonable explanation (III) and does not rely on querying the
neural network.

Thereby, no supervision in terms of actual labels is required during the training. Instead, the fidelity between λ and g is
computed using a distance measure over a set of data points in the loss function. Since the loss is only computed during
the training, no data except the network parameters is required when applying the I-Net. This is a major advantage to
sample-based approaches, where the training data is required for each network we want to interpret. Accordingly, to
generate an explanation, I-Nets only need access to the network parameters and therefore, the approach can be applied
in scenarios where the training data is not accessible without suffering a performance deficit.

The most crucial part of the I-Net approach is an efficient training procedure. Thereby, as for most machine learning
tasks, good training data (in our case, a set of network parameters Θλ) is important. Therefore, we present an improved
data generation method making I-Nets applicable for real world scenarios in Section 3.1.1.

3 Robust I-Nets for Decision Trees

In this section, we present the main contributions of this paper. Marton et al. [2022] argue that I-Nets can be trained
solely based on synthetic data. However, it is crucial that this synthetic data comprises reasonable learning problems to
assure that an application of the I-Net is possible in a real-world setting. Therefore, we will introduce an improved
data generation method that considers multiple data distributions and creates reasonable learning tasks (Section 3.1.1).

4

Explaining Neural Networks without Access to Training Data A PREPRINT

I. Learned
Decision Boundary II. Bad Explanation III. Good Explanation

(a)
Without

Input Data

(b)
With

Input Data

Figure 3: Good and Bad Explanations. This figure shows an exemplary decision boundary of a bad (II) and a good
(III) explanation for the model we want to interpret (I). Without considering the data (a), the explanation shown in II
appears very reasonable, since the areas created by the decision boundary cover most of the decision boundary of the
original model. However, when taking the data into account (b), we can see that the small area in the center of the
picture is very important, since there are many samples located. This is neglected by the explanation shown in II and
only considered by the explanation shown in III.

Furthermore, Marton et al. [2022] focus on regression tasks. In contrast, we focus on classification tasks and therefore
present an adjusted loss function for the I-Net (Section 3.1.2).

In general, the I-Net framework can be applied to arbitrary function families for g, as long as a suitable representation
θg is available. In Section 3.2, we introduce different DT variants and propose corresponding representations θg that
allow an efficient training.

3.1 Improved Data Generation and Training Procedure

3.1.1 Data Generation Method

The data generation method proposed by Marton et al. [2022] focused on maximizing the performance of the I-Net
during training by learning functions λ that are similar to the function family of g. This is achieved by randomly
sampling a set of functions from the family of g. These functions are queried to generate labels for a uniformly sampled
dataset, which is used to learn λ. This procedure ensures that the functions λ are representative of g, which enables
efficient training. However, a high training performance does not necessarily mean that the model generalizes well to
unseen data, i.e., neural networks trained on real-world datasets.

Additionally, Marton et al. [2022] use a uniform data distribution to query λ for the fidelity calculation in the I-Net
loss. However, if we only consider a uniform distribution during the training of the I-Net, we might not be able to
make reasonable predictions if the network we want to interpret was trained using data from a substantially different
distribution, as we will show in Section 4.2.3. This problem is related to the general problem that occurs for a machine
learning task, if the data we are actually interested in (i.e., the test data) is from a different distribution than the data
used for training the model.

To tackle this issue, we propose using multiple, different distributions during the training of the I-Net to make it more
robust and therefore applicable on real-world datasets. In this process, we can also utilize the fact that an I-Net can
be trained in a controlled, synthetic environment [Marton et al., 2022]: For each θλ ∈ Θλ, we know the data that was
used for learning λ. Therefore, we can use these data points to compute the I-Net loss on a meaningful set of samples
during the training. The I-Net utilizes this additional knowledge to generalize. Since the loss is only calculated during
training, it can generate meaningful explanations solely based on the network parameters θλ at test time.

In general, generating the training data for the I-Net Θλ involves three major steps:

5

Explaining Neural Networks without Access to Training Data A PREPRINT

w1
⠇
wm

w1
⠇
wm

Neural Network
𝝀

			𝒘(𝟏)

⠇
			𝒘(|𝒘|)

Network Parameters
𝜽𝝀

𝒙	(')
𝒙	(()

... 𝒙	())

𝜆(()	(𝒙	(())

𝜆())(𝒙	()))

𝜆(')(𝒙	('))
...

Interpretation Network

Surrogate Model
Representation 𝜽𝒈

𝒙	(')
𝒙	(()

... 𝒙	())

𝜆(()	(𝒙	(())

𝜆())(𝒙	()))

𝜆(')(𝒙	('))

...

Figure 4: Overview of the I-Net Approach. The neural network parameters as input are translated into a surrogate
model Marton et al. [2022].

Distribution Parameter p1 Parameter p2 Symbol
Uniform minimum maximum U(p1, p2)
Normal location (mean) scale (standard deviation) N (p1, p2)
Gamma shape (k) scale (θ) Γ(p1, p2)

Beta α β B(p1, p2)
Poisson lambda - Poi(p1)

Table 1: Data Generation Distributions. This table summarizes the different distributions used for the data generation
of the I-Net with their parameters and used symbol.

1. Generate N datasets Dλ = {(x(j), y(j))}Mj=1, each comprising M samples.
2. For each dataset Dλ, train a network λ, extract the network parameters θλ and add them to the training set Θλ.
3. Use Θλ to train an I-Net for the respective function family.

The data generation is visualized in Figure 5: For each feature i, we sample data points from one distribution with k
different parametrizations, where k is the number of classes. For this paper, we focus on binary classification tasks
and therefore set k = 2. The distribution Di,k is sampled uniformly from {U ,N ,Γ,B,Poi} for each feature. The
distributions considered within this paper are summarized in Table 1. The distributions were selected to cover a wide
range of diverse distributions that are reasonable for many different real-world phenomena [Leemis and McQueston,
2008, Mun, 2015]. The parametrization for the distributions Di,0 and Di,1 are again randomly drawn from U(0, p),
where p is a hyperparameter for the data generation procedure. The number of samples is selected randomly, where
M0 = dU(1,M − 1)e data points are sampled from Di,0 and M1 = M −M0 data points are sampled from Di,1. The
generated datasets are balanced and for each feature and the first M2 data points are associated with Class 0 and the
subsequent M2 data points are associated with Class 1. This procedure is formalized in Algorithm 1. We can see the
proposed data generation method as a generalization of common, synthetic machine learning problems (as for instance
make_blobs1), that is able to generate more realistic tasks.

1Accessible using sklearn under https://scikit-learn.org/0.15/modules/generated/sklearn.datasets.make_
blobs.html (Accessed 15.05.2022)

6

https://scikit-learn.org/0.15/modules/generated/sklearn.datasets.make_blobs.html
https://scikit-learn.org/0.15/modules/generated/sklearn.datasets.make_blobs.html

Explaining Neural Networks without Access to Training Data A PREPRINT

Feature 1 Feature 2 Feature 3 … Feature n-2 Feature n-1 Feature n Class
nu

m
be

r o
f s

am
pl

es
 (M

)

number of feature (n)

…

…
𝐷!,#

𝐷!,!

𝐷$,#
𝐷%,#

𝐷&'$,#
𝐷&'!,#

𝐷&,#

𝑐#

𝑐!𝐷$,!
𝐷%,!

𝐷&'$,!
𝐷&'!,!

𝐷&,!

Figure 5: Data Generation Visualization. This graphic visualizes the generation of a balanced, random dataset used
for training a network λ where D ∈ {U ,N ,Γ,B,Poi}. For each feature, a random distribution with two random
parametrizations is chosen and a random number of data points is sampled from each distribution.

Algorithm 1 Generate Multi-Distribution Data

1: function GENERATE(n,D,M)
2: for i = 1, . . . , n do
3: Di ∼ U{U ,N ,Γ,B,Poi} . Randomly chose distribution
4: M0 ∼ dU(1,M − 1)e
5: p0 ∼ U(0, p) . Randomly sample parameters for Di, 0
6: p1 ∼ U(0, p) . Randomly sample parameters for Di, 1
7: for j = 1, . . . ,M0 do
8: x

(k)
i ∼ Di(p0)

9: end for
10: for j = 1, . . . ,M −M0 do
11: x

(M0+j)
i ∼ Di(p1)

12: end for
13: xi ← xi−min(xi)

max(xi)−min(xi
) . Scale feature to [0, 1]

14: end for
15: for j = 1, . . . , dM2 e do
16: y(j) ← 0
17: end for
18: for j = 1, . . . , bM2 c do
19: y(j) ← 1
20: end for
21: D ← {x(j), y(j)}Mj=1
22: return D
23: end function

3.1.2 Adjusted Loss Function

While Marton et al. [2022] focused on regression tasks, we focus on binary classification tasks within this paper.
Therefore, the loss function has to be adjusted by using binary cross-entropy as distance measure to quantify the fidelity
between λ and g:

BC(θλ, θg) =
1

M

M∑
j=1

bλ(x(j))e × log(g(x(j)))

+(1− bλ(x(j))e)× log(1− g(x(j)))

(1)

7

Explaining Neural Networks without Access to Training Data A PREPRINT

Interpretation-Net Output Layer

Feature Identifier Output
(Softmax Activations)

1𝜽𝒈 	
=

Class Probability
Output

(Sigmoid Activations)

.90.30 .60.80

10 0.4 0.7 0.2 0.8 0.3 0.9 0.6

Feature
Identifier
1st Split

.80.20

Feature
Identifier
2nd Split

Feature
Identifier
3rd Split

.70 .30 .90.10

Split Value Output
(Squeezed Sigmoid Activations)

Split Value
1st Split

.40.10

Split Value
2nd Split

Split Value
3rd Split

.70 .50 .20.90

𝑥! < 0.4

𝑥" < 0.7 𝑥! < 0.2

𝐶𝑙𝑎𝑠𝑠	1
𝑃 𝑐! = 0.8

True False

True False True False

𝐶𝑙𝑎𝑠𝑠	0
𝑃 𝑐! = 0.3

𝐶𝑙𝑎𝑠𝑠	1
𝑃 𝑐! = 0.9

𝐶𝑙𝑎𝑠𝑠	1
𝑃 𝑐! = 0.6

Figure 6: Exemplary I-Net Output for DTs. The DT representation is predicted by the I-Net using three separate
output layers with different activation functions. The output shows an exemplary DT of depth two for a binary
classification task on a dataset with two features.

Here, b·e denotes rounding to the closest integer, which is required to calculate the binary cross-entropy correctly. The
I-Net loss for a set of network parameters Θλ = {θ(i)

λ }Ni=1 is then computed as

LI =
1

|Θλ|
∑
θλ∈Θλ

BC(θλ, I(θλ)). (2)

3.2 Function Families and I-Net Output Representation

3.2.1 I-Nets for Standard Decision Trees

The first function family we will consider as surrogate models are standard DTs. DTs and decision rules are frequently
used as explanations, since they are comparatively easy to understand for most humans [Molnar, 2020].

Standard Decision Tree Representation in the I-Net Framework The I-Net approach requires a suitable repre-
sentation θg for standard DTs to enable efficient learning. Specifically, we need a one-dimensional encoding of internal
and leaf nodes, as shown in Figure 6.

The inner node of a DT comprises two major parts: The first part is the feature that is considered within the split,
and the second part is the split value. The operator is fixed to less (<) as it is common practice for representing DTs.
Furthermore, we can fix the left path to be the true path and the right path as the false path.

The feature xi considered in the split can be defined by enumerating the features, where i ∈ {0, 1, . . . , n}. We can
represent this using n neurons and a softmax activation for each inner node (i.e., we can see it as a classification task for
which feature to consider at a certain split).

8

Explaining Neural Networks without Access to Training Data A PREPRINT

For the split value, we can assume that all features are scaled to be within [0, 1], as it is common practice. To represent
this in the I-Net output, we can use sigmoid activations, to constraint the output interval. However, due to the functional
form of the sigmoid activation, the I-Net prefers split values close to 0.5. To counteract this tendency, we used a
squeezed sigmoid activation, which we define as 1

1+e−3x . This supports the I-Net in choosing more distinct split values.
Furthermore, the output layer does not comprise one split value for each split, but n split values for each split (one for
each feature). To construct the DT, we always use the split value at the index indicated by the feature identifier. This
design choice is influenced by the fact that we always need to consider the meaning of a split value in context with the
corresponding feature. In other words, while the split value 0.7 might be a reasonable threshold for the feature x0, it
might not be reasonable at all for the feature x1. Designing the I-Net output with one split value for each feature and
each inner node, we can make this interaction easier to learn.

In a standard DT, the leaf nodes comprise the decision for a certain path (i.e., the class to be predicted). However, to
compute the I-Net loss in Equation 2, it is necessary that g has probabilities as an output. Therefore, we adjust the
DTs to not just have a class in the leaf node, but a probability. This is similar to the purity in the leaf node of a DT,
which is also often used as a gateway to predicting probabilities using a standard DT. In a binary classification case, we
can use a single value to represent the probabilities of predicting Class 1 and thereby, the probability of Class 0 is the
complementary probability. In the output layer of the I-Net, we can represent this using a total of 2d neurons with
sigmoid activations (one neuron for each leaf node). This can easily be extended for a multi-class classification problem
with k classes by using k × 2d neurons and one softmax activation over k neurons (one softmax for each leaf node).

3.2.2 I-Nets for Soft Decision Trees

SDTs were proposed by Frosst and Hinton [2017] to overcome the interpretability problem that arises from distributed
hierarchical representations when using neural networks by expressing the knowledge using hierarchical decisions of a
tree-based structure. Unlike standard DTs, SDTs do not make hard true/false splits at each internal node, but use soft
decisions associated with probabilities for each path. In the following, we will shortly introduce the functioning of
SDTs. For a more in-depth description, especially concerning the learning algorithm, we refer to Frosst and Hinton
[2017].

Figure 7 shows a SDT with a single internal node following the design of Frosst and Hinton [2017]. Each internal
node j comprises a filter wj and a bias bj . While the bias is a single, learned value, the filter consists of one value for
each feature. Accordingly, in contrast to a standard DT with univariate decisions, a SDT has a multivariate decision at
each internal node. This comes with a significantly higher model complexity, especially with an increasing number of
features.

At each internal node, the probability of taking the right branch is calculated by

P j(x) = S(xwj + bj) (3)

where x is an input sample and S is a sigmoid function defined as S(x) = 1
1+e−x . Each leaf nodes l comprise a

probability distribution Ql., which for the binary case is defined as

Qlk =
eφ

l
k

eφ
l
0 + eφ

l
1

(4)

where k ∈ {0, 1} is the output class and φl. is a learned parameter for each leaf l.

Usually when using SDTs, there is not only a single leaf node considered when making a prediction, but all leaf nodes
are multiplied with their path probabilities to calculate the final probability distribution. However, Frosst and Hinton
[2017] suggest increasing the interpretability of SDTs by just considering the path with the maximum path probability
when calculating the final probability distribution. Since this does not significantly affect the performance, we will only
consider SDTs using the maximum path probability in this paper.

While Frosst and Hinton [2017] focused on image datasets for a better visualization of the explanation, they also
reported that their algorithm can efficiently be applied to tabular data. However, for tabular data, especially when
the feature space is high-dimensional, using SDTs as a surrogate model can make the explanation hard to understand
for humans due to their high complexity. To counteract the strong correlation between the model complexity and the
number of features, we propose univariate SDTs. Univariate SDTs are similar to standard SDTs, but the filter at each
internal node comprises only one value 6= 0. While the complexity of univariate SDTs is similar to standard DTs, they
can represent decision boundaries that are not parallel to the feature axis. Simultaneously, they maintain the hierarchical
structure, making them easier to comprehend for humans.

Unfortunately, univariate SDTs cannot be trained using the algorithm proposed by Frosst and Hinton [2017] without
adjustments and there is to the best of our knowledge no existing learning algorithm for univariate SDTs. However,

9

Explaining Neural Networks without Access to Training Data A PREPRINT

Inner Node

Filter: 𝒘!

Bias: 𝑏!

Leaf Node

Parameter: 𝝓!
Leaf Node

Parameter:𝝓"

Input 𝒙

1 − 𝑆(𝒙𝒘 + 𝑏) 𝑆(𝒙𝒘 + 𝑏)

Distribution: 𝒬! Distribution: 𝒬"

Figure 7: Soft Decision Tree This figure shows a minimal SDT with a single inner node and two leaf nodes.

we can constrain the learning algorithm to just consider the feature with the highest absolute value (which is also the
value that according to the design has the highest influence on the decision) when calculating the path probabilities. We
can implement this by multiplying the filter with a binary mask generated by an argmax or exaggerated softmax of the
absolute filter values. Accordingly, during the forward pass, the filter values are calculated as:

wi = wi × σ(β2 × |wi|) (5)

By increasing the temperature β2, we increase the extent to which the filter with the highest absolute value influences
the calculation of the path probability. When β2 is sufficiently high, we approximate an argmax and the path probability
is calculated only based on the filter with the highest absolute value.

Soft Decision Tree Representations in the I-Net Framework To use SDTs as surrogate models within the I-Net
framework, we again need a suitable representation θg . Fortunately, the encoding for standard SDT shown in Figure 8
is straightforward: We can represent the internal nodes with n output neurons for the filter (one for each feature) and
one output neuron for the bias. Since there are no specific ranges for the filter and bias value in the SDT, we use linear
activations. The same accounts for φl., where we need k output neurons for each leaf node. Again, we can use linear
activations here, since the final probabilities are calculated by Qlk and no specific range for φl. is required.

Unfortunately, the representation of univariate SDTs as I-Net output is not as straightforward. This is mainly caused by
the fact that neural networks hardly predict a value of 0, which would be necessary when using the same representation
we proposed for standard SDTs. This would result in many small filter values and therefore still multivariate trees. One
solution is using a feature identifier and a separate filter value output, similar to the representation of the internal nodes
for standard DTs (Figure 6). Accordingly, we can use n output neurons and a softmax activation for each internal node
to indicate at which position to set the filter value (i.e., we can see this as a classification task for which filter value
is 6= 0). We represent the filter value again using n neurons with a linear activation for each internal node. The bias
and leaf parameters are adopted from the standard SDT. An exemplary representation for univariate SDTs is shown in
Figure 9.

4 Evaluation

The goal of our evaluation is to show that I-Nets are able to interpret neural networks trained on real-world datasets
without requiring access to the training data, and achieve a higher fidelity than sample-based approaches in most of the
cases. Therefore, we will address the following in our evaluation:

10

Explaining Neural Networks without Access to Training Data A PREPRINT

Interpretation-Net Output Layer

Filter Output (Linear Activations)

1st Node
Filter

𝜽𝒈 	
=

-2.10.1

2nd Node
Filter

-1.7 0.9

3rd Node
Filter

2.9-2.1

filter:	𝒘𝟏= [0.1, −2.1]
bias: 𝑏" = 1.7

Bias Output
(Linear Activations)

Leaf Distribution Output (Linear Activations)

1st Node
Filter

2.1-0.3

2nd Node
Filter
1.9 -1.1

3rd Node
Filter

2.9-0.7

3rd Node
Filter

1.60.21.31.7 -0.4

-0.3 2.1 1.9 -1.1 -0.7 2.9 0.2 1.60.1 -1.7-2.1 0.9 2.9-2.1 1.7 1.3 -0.4

1 − 𝑆(𝒙𝒘 + 𝑏) 𝑆(𝒙𝒘 + 𝑏)

filter: 𝒘𝟐 = [−1.7, 0.9]
bias: 𝑏$ = 1.3

filter:	𝒘𝟑= [−2.1, 2.9]
bias:	𝑏$= −0.4

1 − 𝑆 𝒙𝒘 + 𝑏 𝑆 𝒙𝒘 + 𝑏

𝝓𝟐 = [1.9, −1.1]𝝓𝟏 = [−0.3, 2.1]

1 − 𝑆 𝒙𝒘 + 𝑏 𝑆 𝒙𝒘 + 𝑏

𝝓𝟒 = [0.2, 1.6]𝝓𝟑 = [−0.7, 2.9]

𝐶𝑙𝑎𝑠𝑠	0𝐶𝑙𝑎𝑠𝑠	1 𝐶𝑙𝑎𝑠𝑠	1𝐶𝑙𝑎𝑠𝑠	1

Figure 8: Exemplary I-Net Output for SDTs. The SDT representation is predicted by the I-Net using three
separate output layers with linear activation functions. The output shows an exemplary SDT of depth two for a binary
classification task on a dataset with two features.

• We illustrate which effects occur once the training data is not accessible for querying the model and thereby
show that it is crucial for sample-based approaches to access the training data (Section 4.2.1).

• We empirically investigate the fidelity of the I-Net in comparison to sample-based approaches on real-world
datasets if the training data is not accessible (Section 4.2.2).

• We perform an ablation study showing the effect of the improved data generation method introduced in
Section 3.1.1 on the I-Net performance for real-world datasets (Section 4.2.3).

• We present a case study of credit card default prediction, comparing the explanations for a neural network
generated by the I-Net and sample-based approaches without access to the training data (Section 4.2.4).

4.1 Experimental Setup

Within our experiments, we compare I-Nets with standard distillation approaches for a scenario where the original
training data is not available. Thereby, we used the representations Θg described in Section 3.2 for the I-Net. The
sample-based distillation was conducted as follows:

• Standard Decision Trees: For standard DTs, we used the implementation from sklearn2 (Accessed
15.05.2022) which uses the CART algorithm for DT induction [Breiman et al., 1984].

• Univariate Soft Decision Trees: For univariate SDTs, we used the learning algorithm introduced by Frosst
and Hinton [2017] with our adjustments described in Section 3.2.2.

2Available under: https://scikit-learn.org/stable/modules/generated/sklearn.tree.
DecisionTreeClassifier.html

11

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

Explaining Neural Networks without Access to Training Data A PREPRINT

Interpretation-Net Output Layer

𝜽𝒈 	
=

	𝑠!= −2.1𝑥! + 1.7

Leaf Distribution Output
(Linear Activations)

1st Node
Filter

2.1-0.3

2nd Node
Filter

1.9 -1.1

3rd Node
Filter

2.9-0.7

3rd Node
Filter

1.60.2

Bias Output
(Linear Activations)

1.31.7 -0.4

-0.3 2.1 1.9 -1.1 -0.7 2.9 0.2 1.6-2.1 2.9-1.7 1.7 1.3 -0.4

1 − 𝑆(𝑠) 𝑆(𝑠)

	𝑠"= −1.7𝑥# + 1.3 	𝑠$= 2.9𝑥! − 0.4

1 − 𝑆 𝑠 𝑆 𝑠

𝝓𝟐 = [1.9, −1.1]𝝓𝟏 = [−0.3, 2.1]

1 − 𝑆 𝑠 𝑆 𝑠

𝝓𝟒 = [0.2, 1.6]𝝓𝟑 = [−0.7, 2.9]

Feature Identifier Output
(Softmax Activations)

Feature
Identifier
1st Split

.80.20

Feature
Identifier
2nd Split

.70 .30

Feature
Identifier
3rd Split

.90.10

1 0 1

Filter Value Output
(Linear Activations)

Filter
Value

1st Split

Filter
Value

2nd Split

Filter
Value

3rd Split

-1.7-2.1 2.9-0.3 2.3 1.5

𝐶𝑙𝑎𝑠𝑠	0𝐶𝑙𝑎𝑠𝑠	1 𝐶𝑙𝑎𝑠𝑠	1𝐶𝑙𝑎𝑠𝑠	1

Figure 9: Exemplary I-Net Output for Univariate SDTs. The univariate SDT representation is predicted by the
I-Net using four separate output layers with different activation functions. The output shows an exemplary univariate
SDT of depth two for a binary classification task on a dataset with two features.

• Standard Soft Decision Trees: For SDTs, we used the algorithm proposed by Frosst and Hinton [2017].

The hyperparameters used during our experiments are summarized in Table 8-9.

Since we assume that the training data is not available, we needed to generate data for querying the neural network to
distill a surrogate model. Therefore, we selected three sampling strategies for generating the query data as benchmarks:

1. Multi-Distribution: According to Algorithm 1, i.e., considering different data distributions to allow for a
fair comparison with the I-Net.

2. Standard Uniform: A standard uniform distribution U(0, 1).
3. Standard Normal: A standard normal distribution N (0, 1).

For each sampling strategy, we sampled 10000 data points. However, this is only necessary for the sample-based
approaches and the I-Net as sample-free approach does not rely on querying to generate explanations. Increasing the
number of sampling points further did not enhance the fidelity of sample-based approaches (see Figure 14), but only
increases their runtime. We further assumed, that the data used for training the neural network was scaled to be in [0, 1]
and therefore, we also scaled the sampled data to the same interval.

The network parameters Θλ for training the I-Net were generated according to Algorithm 1 using the hyperparameters
in Table 7. The hyperparameter p which defines the maximum value for the distribution parameters was fixed to 5
during the data generation for all experiments. Furthermore, we excluded all datasets that were linearly separable during
the data generation to focus on more complex and reasonable datasets. The I-Net hyperparameters are summarized in
Table 6 and were tuned using a greedy neural architecture search according to Jin et al. [2019] followed by a manual
fine-tuning of the selected values. We selected one I-Net architecture for each of the three function families.

The neural networks considered during the evaluation in Section 4.2 were trained with the hyperparameters summarized
in Table 7. The fidelity between the surrogate model and the neural network is always calculated based on the test split
of the original data.

12

Explaining Neural Networks without Access to Training Data A PREPRINT

Distribution 1,0: Γ(2.434, 2.031) 661
Distribution 1,1: Γ(4.884, 0.156) 4339
Distribution 2,0: 𝐵(0.015, 2.123) 1445
Distribution 2,1: 𝐵(2.243, 2.857) 3555

Performance Network: 79.6%
Fidelity DT Train Data: 99.2%
Fidelity DT Random Data: 66.4%
Fidelity DT Standard Uniform Data: 81.2%
Fidelity DT Standard Normal Data: 67.4%
Fidelity I-Net: 98.2%

I II III IV V VI

(a)
Standard

DT

Distribution 1,0: Γ(0.682, 0.815) 1405
Distribution 1,1: Γ(2.646, 1.157) 3595
Distribution 2,0: 𝐵(0.475, 4.203) 1107
Distribution 2,1: 𝐵(0.904, 1.263) 3893

Performance Network: 73.8%
Fidelity DT Train Data: 82.2%
Fidelity DT Random Data: 64.8%
Fidelity DT Standard Uniform Data: 64.8%
Fidelity DT Standard Normal Data: 64.8%
Fidelity I-Net: 92.2%

Distribution 1,0: 𝑃𝑜𝑖(0.469)	 3262
Distribution 1,1: 𝑃𝑜𝑖(4.784)	 1738
Distribution 2,0: Γ(0.114, 4.581) 817
Distribution 2,1: Γ(0.562, 0.385)	 4183

Performance Network: 79.2%
Fidelity DT Train Data: 99.0%
Fidelity DT Random Data: 35.0%
Fidelity DT Standard Uniform Data: 36.2%
Fidelity DT Standard Normal Data: 35.2%
Fidelity I-Net: 99.8%

(b)
Univariate

SDT

(c)
Standard

SDT

Figure 10: Visual Decision Boundary Evaluation. This figure shows the decision boundaries of the neural network
we want to interpret (I), followed by the decision boundary of explanations generated by different approaches, along
with their performance for three different datasets and function families. Only when the training data is accessed (II)
and when using the I-Net (VI), the explanation comprises the relevant aspects of the model. When the training data is
not accessible (III)-(V), sample-based approaches are not able to generate reasonable explanations.

4.2 Experimental Results

4.2.1 Visual Evaluation for Different Distributions

In this experiment, we show the importance of knowing the distribution of the training data in a controlled, synthetic
setting. We use a two-dimensional dataset which allows a visual comparison of the decision boundaries (Figure 10).
The data used for training the neural networks for this experiment was generated randomly according to Algorithm 1
but is distinct to the data used for training the I-Net to ensure a fair comparison.

Figure 10(a) shows a decision boundary learned by a neural network that ranges from the bottom left corner to the
middle right. Thereby, many data points that were assigned to Class 0 by the neural network are located in the bottom
left corner. In contrast, the top right part contains few to no data points. When the training data is available (II), the
standard DT learned a decision boundary that closely matches the decision boundary of the neural network, including
the area in the bottom left. However, if the training data is not available, the sample-based approach (III-V) only
comprises the large area towards the top and neglects the small area at the bottom left. Considering just the shapes and
size of the areas created by the decision boundary, this seems to be a reasonable explanation. However, as explained in
Section 2.2, if we take the data into account, it becomes apparent that the neglected part of the decision boundary at
the bottom left is much more important, since many data points are located in this area. In contrast, the explanation
generated by the I-Net as sample-free approach (VI) correctly separates the samples at the bottom left with its decision
boundary and neglects the part at the top right, which is not relevant when taking the data into account. We can
confirm this by taking the fidelity scores into account: The I-Net achieved a fidelity of 99.8%, while the sample-based
distillation without training data only achieved a maximum fidelity of 36.2%.

For univariate and standard SDTs we can observe similar results: The fidelity for the sample-based approaches (III)-(V)
significantly decreased if the training data is not available and the explanation focused on non-relevant areas. In contrast,
the I-Net (VI) was able to generate high-fidelity explanations without accessing the training data.

4.2.2 Real World Datasets Performance Comparison

In this experiment, we compare the performance of the I-Net and a sample-based distillation without access to train
data on real-world datasets. We selected 8 commonly used datasets, mostly focusing on the banking and medical
domain, comprising personal, confidential data where it is realistic to assume that the training data cannot be exposed.
A description of the datasets, the preprocessing that was performed, and the performance of the neural networks we
want to interpret is summarized in Appendix B.

13

Explaining Neural Networks without Access to Training Data A PREPRINT

Dataset I-Net Multi-Distribution Standard Uniform Standard Normal
Titanic (n=9) 95.51 ± 0.00 71.12 ± 17.16 86.07 ± 3.30 86.29 ± 7.75
Medical Insurance (n=9) 82.71 ± 0.00 88.12 ± 6.71 89.47 ± 4.19 90.75 ± 8.83
Breast Cancer Wisconsin Original (n=9) 97.10 ± 0.00 83.62 ± 13.09 39.42 ± 13.90 31.88 ± 0.00
Wisconsin Diagnostic Breast Cancer (n=10) 80.36 ± 0.00 56.43 ± 17.65 37.86 ± 15.56 33.39 ± 5.42
Heart Disease (n=13) 73.33 ± 0.00 74.67 ± 9.45 85.67 ± 5.97 80.33 ± 7.67
Cervical Cancer (n=15) 84.71 ± 0.00 65.41 ± 27.77 71.88 ± 9.64 60.82 ± 30.29
Loan House (n=16) 100.00 ± 0.00 77.05 ± 24.41 96.89 ± 7.42 59.84 ± 33.84
Credit Card Default (n=23) 75.80 ± 0.00 69.16 ± 17.58 74.76 ± 0.05 34.33 ± 20.31

Mean Fidelity 86.19 73.20 72.75 59.70
Table 2: Real-World Evaluation Results for Standard Decision Trees.

Dataset I-Net Multi-Distribution Standard Uniform Standard Normal
Titanic (n=9) 95.51 ± 0.00 47.75 ± 14.70 67.19 ± 10.50 61.80 ± 8.35
Medical Insurance (n=9) 84.96 ± 0.00 56.47 ± 13.40 48.05 ± 10.97 49.62 ± 10.79
Breast Cancer Wisconsin Original (n=9) 73.91 ± 0.00 30.87 ± 2.25 31.88 ± 0.00 33.33 ± 7.45
Wisconsin Diagnostic Breast Cancer (n=10) 82.14 ± 0.00 48.57 ± 22.64 28.57 ± 0.00 28.57 ± 0.00
Heart Disease (n=13) 63.33 ± 0.00 60.00 ± 0.00 60.00 ± 0.00 60.00 ± 0.00
Cervical Cancer (n=15) 83.53 ± 0.00 77.06 ± 20.70 84.59 ± 0.35 84.71 ± 0.00
Loan House (n=16) 100.00 ± 0.00 13.11 ± 0.00 13.11 ± 0.00 13.11 ± 0.00
Credit Card Default (n=23) 75.03 ± 0.00 65.25 ± 16.47 74.73 ± 0.00 65.57 ± 16.60

Mean Fidelity 82.30 49.89 51.02 49.59
Table 3: Real-World Evaluation Results for Univariate Soft Decision Trees.

Table 2-4 show the results on the selected datasets for the I-Net and a sample-based distillation using the data generation
methods introduced in Section 4.1 for the different function families. For the sample-based distillation, the results show
the mean and standard deviation over 10 trials. While for the standard uniform and standard normal sampling only the
sampled data points differ, we sampled a new set of distributions and parameters for each trial in the multi-distribution
case. For a better visual comparison, we highlighted a value bold if it shows a significantly higher fidelity for a certain
dataset with 95% confidence according to an unpaired t-test3.

Standard Decision Trees Comparing the results for standard DTs as surrogate model in Table 2, the I-Net had a
significantly higher fidelity on 5/8 datasets. A sample-based distillation achieved the highest fidelity on 2/8 datasets.
Even though the multi-distribution sampling strategy did not achieve the best performance on any dataset, it had the
highest average performance among the sample-based distillation methods, with a mean fidelity of 73.2%. Nevertheless,
the performance of the I-Net was significantly better and achieved a mean fidelity of 86.19%. Especially for the Breast
Cancer Wisconsin Original and Wisconsin Diagnostic Breast Cancer, the sample-based distillation was not able to
generate accurate explanations if the training data was not accessible. For those datasets, the fidelity of sample-based
distillation was often even worse than a random guess, which, as already shown in Section 4.2.1, highlights the
importance of querying the model on reasonable data points.

Soft Decision Trees For univariate SDTs, the performance difference between I-Nets and sample-based methods
is even more pronounced: I-Nets achieved a significantly higher fidelity in 7/8 cases with a mean fidelity of 82.3%,
while the best sampling strategy only achieved a mean fidelity of 51.02%.

Finally, for standard SDTs, the I-Net achieved a significantly higher fidelity on 3/8 datasets. The best sampling
strategy for SDTs was a standard uniform distribution, which achieved a significantly higher accuracy than the
I-Net on 2/8 datasets. Comparing the mean fidelities, the performance of the I-Net with a fidelity of 92.1% was
considerably higher than sampling from a standard uniform distribution (82.2%). This was mainly caused by the
superior performance of the I-Net on the Cervical Cancer and Credit Card Default dataset, where the fidelity was
more than 40 percentage points higher than sampling from standard uniform distribution.

3For the t-test calculation, we only compared the I-Net with the distillation approach for the sampling strategy with the highest
fidelity. Therefore, a bold value only means that a sampling strategy was significantly better than the I-Net and not that it was
significantly better than the other sampling strategies. A bold value for the I-Net means that it achieved a significantly higher
accuracy than the best sampling strategy for the respective dataset.

14

Explaining Neural Networks without Access to Training Data A PREPRINT

Dataset I-Net Multi-Distribution Standard Uniform Standard Normal
Titanic (n=9) 95.51 ± 0.00 88.31 ± 3.80 92.47 ± 1.24 92.81 ± 0.75
Medical Insurance (n=9) 77.44 ± 0.00 79.25 ± 20.79 91.20 ± 7.59 78.50 ± 0.60
Breast Cancer Wisconsin Original (n=9) 100.00 ± 0.00 96.67 ± 4.49 100.00 ± 0.00 31.88 ± 0.00
Wisconsin Diagnostic Breast Cancer (n=10) 94.64 ± 0.00 84.82 ± 16.98 97.50 ± 2.55 28.57 ± 0.00
Heart Disease (n=13) 100.00 ± 0.00 90.67 ± 12.45 99.33 ± 1.33 60.00 ± 0.00
Cervical Cancer (n=15) 85.88 ± 0.00 58.35 ± 21.36 43.29 ± 11.54 25.76 ± 2.38
Loan House (n=16) 100.00 ± 0.00 50.82 ± 39.36 100.00 ± 0.00 17.21 ± 12.30
Credit Card Default (n=23) 83.30 ± 0.00 59.86 ± 21.99 38.77 ± 6.06 75.40 ± 1.32

Mean Fidelity 92.10 76.09 82.82 51.27
Table 4: Real-World Evaluation Results for Standard Soft Decision Trees.

Dataset Standard DT Univariate SDT Standard SDT
new old new old new old

Titanic (n=9) 95.51 39.33 95.51 60.67 95.51 86.52
Medical Insurance (n=9) 82.71 72.93 84.96 77.44 77.44 92.48
Breast Cancer Wisconsin Original (n=9) 97.10 31.88 73.91 31.88 100.00 98.55
Wisconsin Diagnostic Breast Cancer (n=10) 80.36 28.57 82.14 28.57 94.64 83.93
Heart Disease (n=13) 73.33 60.00 63.33 60.00 100.00 80.00
Cervical Cancer (n=15) 84.71 84.71 83.53 15.29 85.88 84.71
Loan House (n=16) 100.00 13.11 100.00 13.11 100.00 100.00
Credit Card Default (n=23) 75.80 74.73 75.03 25.27 83.30 64.97

Mean Fidelity 86.19 50.66 82.30 39.03 92.10 86.40
Table 5: Data Generation Performance Comparison.

Furthermore, we observed that the average fidelity of standard SDTs is considerably higher than the fidelity of
univariate SDTs and standard DTs. We can trace this back to the fact that SDTs have a significantly higher complexity,
especially with an increasing number of variables, as shown in Section 3.2.2. This can also explain why the performance
difference between a sample-based distillation and the I-Net is comparatively small for SDTs: While using meaningful
samples for querying the neural network is very crucial when the surrogate model has low complexity, it is less
crucial if the surrogate model is more complex, making it less reliant on focusing on the most important information.
Accordingly, it is less likely that relevant areas are neglected with an increasing complexity of the surrogate model.
However, for interpretability, we are usually interested in surrogate models with a comparatively low complexity that
are understandable for humans. In this scenario, I-Nets substantially outperformed sample-based methods.

Summed up, the I-Net outperformed a sample-based distillation on the majority of datasets when training data was not
accessible for each type of surrogate model considered in this paper. In total, the I-Net achieved a significantly higher
fidelity in 15/24 evaluated cases and only in 5/24 cases a significantly lower fidelity. Especially for surrogate models
with low complexity, sample-based approaches are dependent on proper querying. Therefore, using the I-Net in such
scenarios can achieve a higher fidelity of the surrogate model. This can be crucial since wrong explanations can lead to
wrong decisions, as we will evaluate more in-depth in Section 4.2.4.

4.2.3 Ablation Study

In Section 3.1.1 we introduced an improved data generation method which should be more robust in a real-world
scenario, since it considers multiple different distributions. In the following, we will compare our new data generation
method with the data generation method introduced by Marton et al. [2022], which generates data based on the function
family of the surrogate model and considers only a single distribution. As shown in Table 5, we were able to outperform
the standard data generation method in 7/8 datasets for standard DTs, 8/8 datasets for univariate SDT and 6/8 datasets
for the standard SDT. Summed up, the improved data generation method achieved a higher fidelity in 21/24 cases,
while the old data generation only achieved a higher fidelity in 1/24 cases. Comparing the average performance over
all datasets, we also observed a significant increase in the accuracy using the new data generation method of ≈ 36
percentage points for standard DTs and ≈ 43 percentage points for univariate SDTs. For standard SDTs, the difference
in the mean fidelity was significantly smaller, with only ≈ 6 percentage points. One explanation could be the higher
complexity of the surrogate model for standard STDs, as already discussed in Section 4.2.2.

15

Explaining Neural Networks without Access to Training Data A PREPRINT

Payment Delay (t-1)
< 2.4

Payment Delay (t-5)
< 3.9

Bill Amount (t-4)
< 144,000

Payment Amount (t-1)
< 486,000

Marriage
< 1.5

Payment Amount (t-1)
< 382,000

Payment Amount (t-5)
< 143,000

Fidelity Real Data: 75.8%

No Default
𝑃 𝑐! = 	0.81

No Default
𝑃 𝑐! = 	0.76

No Default
𝑃 𝑐! = 	0.62

No Default
𝑃 𝑐! = 	0.62

Default
𝑃 𝑐! = 	0.38

Default
𝑃 𝑐! = 	0.34

Default
𝑃 𝑐! = 	0.40

Default
𝑃 𝑐! = 	0.31

(a) I-Net Standard DT

Payment Amount (t-6)
< 373,000

Payment Delay (t-1)
< 4.6

Payment Delay (t-1)
< 5.3

Payment Amount (t-1)
< 623,000

Payment Amount (t-1)
< 641,000

Payment Amount (t-4)
< 196,000

Payment Delay (t-2)
< 2.1

Fidelity Sampled Data: 82.7%
Fidelity Real Data: 25.3%

Default
468/145

No Default
458/979

Default
1096/75

Default
1052/433

No Default
113/352

No Default
141/3253

No Default
329/664

No Default
39/403

(b) Sample-Based Standard DT

Figure 11: Explanation Comparison for Standard Decision Trees. The surrogate model on the right is learned by a
sample-based distillation with a multi-distribution sampling strategy. The DT on the left is predicted by the I-Net. The
I-Net makes reasonable splits and achieves a significantly higher fidelity on the real data.

4.2.4 Case Study: Explaining Neural Networks for Credit Card Default Prediction

In this section, we will take a closer look at the explanations generated by sample-based approaches and the I-Net by
returning to Example 1 which we introduced in Section 1. The purpose of this experiment is to show in a real-world
setting that without access to the training data, the surrogate model generated by sample-based approaches can lead to
incorrect assumptions on the function learned by the neural network. We want to note that without access to the training
data, it is not possible to identify for a specific surrogate model whether it contains a misconception or not, since we are
not able to calculate a representative fidelity.

The Credit Card Default dataset is concerned with credit card default prediction based on 23 features including
demographic data and the credit history of clients in Taiwan [Yeh and Lien, 2009]. The demographic features include
the sex, the education level, the marital status and the age. Furthermore, the repayment status, the amount of the bill
and the amount of previous payments, each for the past 6 months and the credit limit are listed for each client. The
dataset is available in the UCI Machine Learning repository [Dua and Graff, 2017], and a more detailed summary of the
features with a short explanation is given in Table 11.

Figure 11 shows the standard DT surrogate models generated by the I-Net and a sample-based distillation using the
multi-distribution sampling strategy. As shown in Figure 11a, the I-Net archived a fidelity of 75.8% and only considers
a single split to decide whether there will be a payment or not. The split is based on whether the payment for the
previous month was delayed for less than three months (left path) or not (right path). We can consider this as a very
reasonable split, if we assume that if a client was in default previously, there is a higher possibility that there will be a
default again. If we take the probabilities at the leafs into account, we can get some more information on the decision
process. If the payment for 5 months ago was also delayed less than 4 months, the probability that there will be no
default is even higher, as shown in the left branch of the tree. If there was a delay of more than 4 months, the probability
that there will be a default is approximately 20% higher. Furthermore, as we can see in the split at the bottom-right, if
the past payment amount was higher than 143, 000, the chance of a default is approximately 10% higher in this branch.

In contrast, when taking a closer look at the DT generated by a sample-based distillation (Figure 11b), we can observe
that the entire right branch of the tree has No Default as prediction. This prediction is made solely based on the first
split, where the right branch is taken if the payment amount 6 months ago was larger than 373, 000. This translates to
the rule that we should always predict that there will be no default in the payment if there was a large payment amount
in the past. However, it seems counter-intuitive to make this decision without taking for instance the credit history of the
client and whether there were defaults previously into account. This is confirmed by the poor fidelity of the surrogate
on the real data, which was only 25.3% and worse than a random guess. However, the surrogate model had a very high
fidelity of 82.7% on the sampled data used for querying the model which leads to this misconception, since the model
appears to have a high fidelity that does not hold on the real data. Without access to the training data, it is not possible
to identify this misconception and taking the high fidelity on the sampled data into account, we might assume that the
surrogate actually represents what the model has learned and therefore would make wrong assumptions on its behavior.

We can observe similar misconceptions for the function family of univariate and standard SDTs. However, we will not
discuss them here in detail, but refer to the Appendix C for an in-depth evaluation of the explanations generated for
those function families.

16

Explaining Neural Networks without Access to Training Data A PREPRINT

5 Related Work

Various methods to interpret black-box models have been proposed in the past decades. Overviews from different
perspectives are given by Doshi-Velez and Kim [2017], Lipton [2018] and Molnar [2020]. In this paper, we focus on
methods that translate neural networks into DTs to interpret the underlying decision function.

Model distillation is a common technique to transfer knowledge from a complex model into a surrogate model [Buciluǎ
et al., 2006, Hinton et al., 2015]. It can be used to obtain more compact model representations for efficiency reasons
[Buciluǎ et al., 2006, Hinton et al., 2015, Furlanello et al., 2018] or to interpret the model as a human-understandable
function [Frosst and Hinton, 2017, Tan et al., 2018]. With the focus on interpretability, model distillation is performed
to either understand the function encoded by trained networks and how predictions are made [Craven and Shavlik, 1996,
Boz and Hillman, 2000, Zhang et al., 2019] or to improve the performance of an interpretable algorithm to use it instead
of the neural network at test time [Krishnan et al., 1999, Frosst and Hinton, 2017, Liu et al., 2018]. Although those
purposes differ, the methods can be interchangeably used for both.

Various sample-based methods using DTs as surrogate models were presented in the past quarter-century [Craven and
Shavlik, 1996, Krishnan et al., 1999, Boz and Hillman, 2000, Johansson and Niklasson, 2009, Frosst and Hinton, 2017,
Liu et al., 2018, Zhang et al., 2019, Nguyen et al., 2020]. These approaches have in common that they transform a
trained neural network into a surrogate function with a tree-like structure. This is usually achieved by maximizing the
fidelity to the neural network on a sample basis. The main differences among existing approaches are the type of the
resulting DTs, the method to train the surrogate model, and the purpose of the surrogate model.

The proposed trees make either univariate [Krishnan et al., 1999, Boz and Hillman, 2000, Liu et al., 2018], m-of-n
[Craven and Shavlik, 1996] or multivariate [Nguyen et al., 2020, Frosst and Hinton, 2017] decisions at each split. Trees
that consider multiple variables can achieve higher fidelity and accuracy than univariate DTs. However, especially for
tabular data, the interpretation becomes harder.

For training the surrogate model, differences exist regarding the data used, the decision how a split is determined, and the
optimization technique used. Regarding the training of trees, most approaches rely on standard DT induction methods.
Krishnan et al. [1999] use ID3 [Quinlan, 1986] and C4.5 [Quinlan, 2014], Craven and Shavlik [1996] use ID2-of-3
[Murphy and Pazzani, 1991] and Nguyen et al. [2020] use CART [Breiman et al., 1984]. While these approaches
greedily optimize the fidelity, Frosst and Hinton [2017] use gradient descent to distill the trees.

In the literature, the data to maximize the fidelity is either the training data used for the neural network [Frosst and
Hinton, 2017, Liu et al., 2018] or data from a distribution that was modeled based on the train data [Craven and Shavlik,
1996, Krishnan et al., 1999, Boz and Hillman, 2000, Johansson and Niklasson, 2009]. The latter has been claimed to be
an effective way to improve the results [Boz and Hillman, 2000, Johansson and Niklasson, 2009].

In all cases, the predictions on data are the only source for understanding the black-box model behavior, and thus
meaningful examples are crucial for the performance. Without information about the distribution of the training data,
e.g., in the form of data points, the performance of sample-based methods decreases significantly. Recent model
distillation approaches deal with this problem using metadata, such as layer activations, to create good samples based on
network information [Lopes et al., 2017, Bhardwaj et al., 2019, Nayak et al., 2019]. However, they often still need access
to the training data in some part of the distillation process. Lopes et al. [2017] use a fraction of the original training
data to compute activations summaries to later compress the network without accessing the data. Similarly, Bhardwaj
et al. [2019] require samples of the original training data to generate activation vectors, which are necessary for their
distillation. However, they report requiring significantly fewer data points than Lopes et al. [2017]. In contrast, Nayak
et al. [2019] does not require access to training data, but only requires the model internals. The model internals are used
to generate a class similarity matrix based on the parameters of the softmax output layer of the neural network. Based
on the class similarity matrix, Nayak et al. [2019] generate meaningful samples called Data Impressions via Dirichlet
sampling based on the output classes. However, the approach requires a softmax output for the neural network and is
tailored towards multi-class classification problems, since it utilizes the knowledge contained in the class similarity
matrix for sampling. Accordingly, an application on a binary classification task is not adequate, since a class similarity
matrix for two classes can contain only little information, which makes sampling difficult. Summed up, the main issue
is that the majority of state-of-the-art sample-free approaches still need access to at least a subset of the training data.
Only Nayak et al. [2019] is applicable if no training data is available, but the application is restricted, e.g., to multi-class
tasks.

17

Explaining Neural Networks without Access to Training Data A PREPRINT

6 Conclusion and Future Work

In this paper, we proposed a new instance of Interpretation Networks (I-Nets) for tree-based surrogate models and
an improved data generation method, making I-Net applicable in a real-world scenario. While traditional approaches
generate explanations sample-based and therefore rely on proper querying, I-Nets utilize the model internals, which
implicitly contain all relevant information about the network function. Therefore, I-Nets can generate reasonable
explanations in scenarios where the training data is not accessible.

Using our new data generation method, we allow the I-Net to learn how to generalize to neural networks trained
on different data distributions. Thereby, the I-Net identifies which aspects learned by the neural network are most
important based on the distribution of the training data and therefore should be contained in the explanation. The I-Net
can use this knowledge to generate meaningful explanations for new, unseen networks, even without access to the
training data.

In our experiments, we showed that sample-based approaches strongly rely on proper querying and are often not able to
generate reasonable explanations once they have no access to the training data. In this scenario, the explanations of
sample-based approaches frequently comprise misconceptions, since they focus on the global behavior and do not focus
on the regions that are important for a reasonable explanation, as we demonstrated within our case study. Furthermore,
we empirically showed that I-Nets consistently outperform sample-based methods on real-world datasets when the
training data is not available. Thus, using I-Nets, high-fidelity explanations can be generated when confidential training
data can’t be exposed.

Currently, the I-Net comprises a feed-forward neural network and the model internals used as an input are flattened
to a one-dimensional array. In further work, we aim for a more sophisticated I-Net architecture and a better-suited
representation for the model input to improve the performance even further. Furthermore, the I-Net is tailored towards
generating fully grown DTs based on its structure. In further work this could be addressed by adjusting the output layer
which allows using greater depths for the explanation without a significant increase in complexity.

A Hyperparameter Summary

The hyperparameters for the I-Net (Table 6) were tuned using a greedy neural architecture search according to Jin et al.
[2019], followed by a manual fine-tuning of the selected values. To measure the performance during the optimization,
we used the validation loss on a distinct validation set Θλ comprising 1000 network parameters.

Parameter Value

DT
Hidden Layer Neurons [1792, 512, 512]

Hidden Layer Activation Sigmoid
Dropout [0, 0, 0.5]

Univariate
SDT

Hidden Layer Neurons [4096, 2048]
Hidden Layer Activation Swisha

Dropout [0, 0.5]

Standard
SDT

Hidden Layer Neurons [1792, 512, 512]
Hidden Layer Activation Swisha

Dropout [0.3, 0.3, 0.3]

Batch Size 256
Optimizer Adam

Learning Rate 0.001
Loss Function LI-Net

Training Epochs 500
Early Stopping Yes

Number of Training Samples 9,000
a The Swish activation function proposed by Ramachan-

dran et al. [2017] is defined by swish(x) = x ×
sigmoid(x) and is claimed to consistently match or
outperform a ReLU activation.

Table 6: I-Net Training Parameters.

18

Explaining Neural Networks without Access to Training Data A PREPRINT

Parameter Value

Hidden Layer Neurons [128]
Hidden Layer Activation ReLU

Dropout No
Batch Size 64
Optimizer Adam

Learning Rate 0.001
Loss Function binary_crossentropy

Training Epochs 1,000
Early Stopping Yes

Number of Training Samples 5,000
Table 7: λ-Net Training Parameters.

Parameter Value

max_depth 3

criterion gini
min_samples_split 2
min_samples_leaf 1

Table 8: Standard DT Training Parameters.

Parameter Value

depth 3

learning_rate 0.01
criterion binary_crossentropy
lambda 0.001

beta 1
weight_decaly 0.0005

maximum_path_probability True
Table 9: SDT Training Parameters.

B Real-World Dataset Specification

A specification of the datasets along with the source of the dataset and the performance of the neural network that was
learned can be found in Table 10. A specification of the hyperparameters for learning the neural networks can be found
in Table 7.

For the Medical Insurance dataset, the original objective is to predict the individual medical cost charged by the
insurance. We transformed this to a classification task with the objective of predicting whether the medical cost is
greater than 10000$ or not. The Heart Disease dataset originally contains 75 attributes. However, only 13 are commonly
used in published experiments. Therefore, we similarly only used these 13 features. Furthermore, We distinguish only
between Presence (values 1, 2, 3, 4) and Absence (value 0), as it is common practice. For the Cervical Cancer dataset,
we selected relevant features similar to the experiments conducted by Molnar [2020] and Fernandes et al. [2017].

For the remainder of the datasets, no feature selection or specific transformation was performed. We used standard
preprocessing for all datasets which includes the following steps:

1. Remove all features comprising identifier features (e.g., IDs, Names).
2. Impute missing values: For numeric values we used the mean for imputation, for ordinal, categorical and

nominal features, we used the mode.
3. Transform ordinal features to numeric values.
4. One-hot-encode categorical and nominal features.

19

Explaining Neural Networks without Access to Training Data A PREPRINT

5. Scale features in [0, 1] using min-max normalization.
6. Split data into distinct train (85%), valid (5%) and test set (10%).
7. Rebalance train data if number of samples of minority class is less than 25%.

Dataset Number of Features
Preprocessed (Raw)

Number of Samples
(True/False)

Citation Source Network
Performance

Titanic 9 (12) 891 (342/549) - https:
//www.kaggle.com/c/titanic/data

83.15

Medical Insurance 9 (7) 1338 (626/712) Lantz [2019] https://www.kaggle.com/datasets/
mirichoi0218/insurance

95.49

Brest Cancer
Wisconsin 9 (10) 699 (241/458) Dua and Graff [2017]

Mangasarian and Wolberg [1990] https://archive.ics.uci.edu/ml/
datasets/Breast+Cancer+Wisconsin+
%28Original%29

97.10

Wisconsin Diagnostic
Breast Cancer 10 (10) 569 (212/357) Dua and Graff [2017] https://archive.ics.uci.edu/ml/

datasets/Breast+Cancer+Wisconsin+
%28Diagnostic%29

98.21

Heart Disease 13 (65) 303 (164/139) Dua and Graff [2017]
Detrano et al. [1989] https://archive.ics.uci.edu/ml/

datasets/heart+disease
93.33

Cervical Cancer 15 (36) 858 (55/803) Dua and Graff [2017]
Fernandes et al. [2017] https:

//archive.ics.uci.edu/ml/datasets/
Cervical+cancer+%28Risk+Factors%29

84.71

Loan House 16 (12) 614 (422/192) - https://datahack.analyticsvidhya.
com/contest/
practice-problem-loan-prediction-iii/

77.05

Credit Card Default 23 (23) 30000 (23364/6636) Dua and Graff [2017]
Yeh and Lien [2009] https:

//archive.ics.uci.edu/ml/datasets/
default+of+credit+card+clients

78.30

Table 10: Dataset Specifications. This table shows the dataset specifications, including the number of features and the
number of samples for each class, along with the accuracy of the neural network that was learned. Furthermore, we list
the source of the corresponding datasets. All datasets were accessed last on 15.05.2022.

C Case Study: Credit Card Default Prediction

C.1 Credit Card Default Dataset Description

In Table 11 we shortly describe the features of the Credit Card Default dataset along with the feature index and name as
given by Yeh and Lien [2009].

C.2 Explaining Neural Networks using Soft Decision Trees

Univariate Soft Decision Trees In Figure 12, we can see explanations for a neural network trained on the Credit
Card Default with univariate SDTs as surrogate model. There are no hard splits in a SDT, but we can still interpret the
surrogate model by inspecting the internal nodes si. Thereby, a positive filter value translates into a higher probability
of taking the right branch when increasing the corresponding input value.

The univariate SDT predicted by the I-Net achieved a fidelity of 75% which is similar to the fidelity of the standard
DT. It considers the feature x8 in the first internal node s1 which corresponds to the repayment status 5 months earlier.
Since we can assume a high correlation between the repayment status for the different months and the target variable,
we can consider this as a similar decision in the standard DT predicted by the I-Net. A high value for this feature leads
to an increased probability of taking the right path where a default of the payment is the most probable outcome in each
leaf, which we can again consider as a reasonable explanation for this decision.

For the univariate SDT generated by a sample-based distillation, there are many leafs where a parameter of 0 was
learned for both classes, which translates in a prediction of No Default, but only with 50% certainty. Additionally, the
repayment status is not considered in neither of the first three internal nodes. If the right branch is taken with a higher
probability, the univariate SDT always predicts that there will be no default. For this decision, only the bill amount 3
months ago is considered. Similar to the standard DT generated by the sample-based distillation, this decision is made
without considering the repayment status at all. Again, the fidelity on the sampled data with 67.1% was significantly
higher than the performance on the real data with only 25.3%. Taking this model to get insights to the functioning of
the model would again lead to strong misconceptions.

Standard Soft Decision Trees Figure 13 shows standard SDTs as surrogate model. For the I-Net, the fidelity of
the standard SDTs was approximately 8 percentage points higher than the fidelity of univariate DTs. However, this

20

https://www.kaggle.com/c/titanic/data
https://www.kaggle.com/c/titanic/data
https://www.kaggle.com/datasets/mirichoi0218/insurance
https://www.kaggle.com/datasets/mirichoi0218/insurance
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
https://archive.ics.uci.edu/ml/datasets/heart+disease
https://archive.ics.uci.edu/ml/datasets/heart+disease
https://archive.ics.uci.edu/ml/datasets/Cervical+cancer+%28Risk+Factors%29
https://archive.ics.uci.edu/ml/datasets/Cervical+cancer+%28Risk+Factors%29
https://archive.ics.uci.edu/ml/datasets/Cervical+cancer+%28Risk+Factors%29
https://datahack.analyticsvidhya.com/contest/practice-problem-loan-prediction-iii/
https://datahack.analyticsvidhya.com/contest/practice-problem-loan-prediction-iii/
https://datahack.analyticsvidhya.com/contest/practice-problem-loan-prediction-iii/
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients

Explaining Neural Networks without Access to Training Data A PREPRINT

Feature
Index

Feature Name Explanation

0 LIMIT_BAL Amount of the given credit (NT dollar): it includes both the individual consumer
credit and his/her family (supplementary) credit.

1 SEX Gender (1 = male; 2 = female)
2 EDUCATION Education (1 = graduate school; 2 = university; 3 = high school; 4 = others)
3 MARRIAGE Marital status (1 = married; 2 = single; 3 = others)
4 AGE Age (year)
5 PAY_0 Repayment status in September, 2005. The measurement scale for the repayment

status is: 1 = pay duly; 1 = payment delay for one month; 2 = payment delay for
two months; . . .; 8 = payment delay for eight months; 9 = payment delay for nine
months and above.

6 PAY_2 Repayment status in August, 2005 (scale same as above)
7 PAY_3 Repayment status in July, 2005 (scale same as above)
8 PAY_4 Repayment status in June, 2005 (scale same as above)
9 PAY_5 Repayment status in May, 2005 (scale same as above)
10 PAY_6 Repayment status in April, 2005 (scale same as above)
11 BILL_AMT1 Amount of bill statement in September, 2005 (NT dollar)
12 BILL_AMT2 Amount of bill statement in August, 2005 (NT dollar)
13 BILL_AMT3 Amount of bill statement in July, 2005 (NT dollar)
14 BILL_AMT4 Amount of bill statement in June, 2005 (NT dollar)
15 BILL_AMT5 Amount of bill statement in May, 2005 (NT dollar)
16 BILL_AMT6 Amount of bill statement in April, 2005 (NT dollar)
17 PAY_AMT1 Amount of previous payment in September, 2005 (NT dollar)
18 PAY_AMT2 Amount of previous payment in August, 2005 (NT dollar)
19 PAY_AMT3 Amount of previous payment in July, 2005 (NT dollar)
20 PAY_AMT4 Amount of previous payment in June, 2005 (NT dollar)
21 PAY_AMT5 Amount of previous payment in May, 2005 (NT dollar)
22 PAY_AMT5 Amount of previous payment in April, 2005 (NT dollar)
target target Default payment (0=yes, 1=no)

Table 11: Credit Card Dataset Feature Description. The description of the feature is based on Yeh and Lien [2009].

𝑠𝟏 = 5.0 ∗ 𝑥" − 4.4

𝑠𝟒 = −2.1 ∗ 𝑥$ + 3.2 𝑠𝟓 = −2.7 ∗ 𝑥& + 4 𝑠𝟔 = −2.1 ∗ 𝑥(& − 3.3 𝑠𝟕 = 3.1 ∗ 𝑥* − 2.3

𝑠𝟐 = −0.8 ∗ 𝑥(" + 0.2 𝑠𝟑 = −6.1 ∗ 𝑥(- + 1.2

Fidelity Real Data: 75.0%

𝝓𝟏 = [−0.2, 0.1] 𝝓𝟐 = [0.3, 0.7] 𝝓𝟑 = [1.0, −1.3] 𝝓𝟒 = [0.0, 0.5] 𝝓𝟓 = [0.3, −0.3] 𝝓𝟔 = [1.5, −1.2] 𝝓𝟕 = [1.2, −1.2] 𝝓𝟖 = [0.3, −0.6]

No Default No Default Default No Default Default Default Default Default

1 − 𝑆 𝑠 𝑆 𝑠

1 − 𝑆 𝑠 𝑆 𝑠 1 − 𝑆 𝑠 𝑆 𝑠

1 − 𝑆 𝑠 𝑆 𝑠 1 − 𝑆 𝑠 𝑆 𝑠 1 − 𝑆 𝑠 𝑆 𝑠 1 − 𝑆 𝑠 𝑆 𝑠

(a) I-Net Univariate SDT

𝑠! = 0.2 ∗ 𝑥!" − 0.2

𝑠# = 0.2 ∗ 𝑥$ − 0.2 𝑠% = 0.2 ∗ 𝑥!& + 0.2 𝑠' = 0.2 ∗ 𝑥! − 0.1 𝑠(= 0.2 ∗ 𝑥$ + 0.2

𝑠" = 0.2 ∗ 𝑥!$ 𝑠) = 0.2 ∗ 𝑥* + 0.2

Fidelity Sampled Data: 67.1%
Fidelity Real Data: 25.3%

𝝓𝟏 = [0.4, −0.4] 𝝓𝟐 = [0.0, 0.0] 𝝓𝟑 = [0.0, 0.0] 𝝓𝟒 = [2.8, −2.9] 𝝓𝟓 = [0.0, 0.0] 𝝓𝟔 = [0.0, 0.0] 𝝓𝟕 = [0.0, 0.0] 𝝓𝟖 = [0.0, 0.0]

Default No Default No Default Default No Default No Default No Default No Default

1 − 𝑆 𝑠 S 𝑠

1 − 𝑆 𝑠 S 𝑠 1 − 𝑆 𝑠 S 𝑠

1 − 𝑆 𝑠 S 𝑠 1 − 𝑆 𝑠 S 𝑠 1 − 𝑆 𝑠 S 𝑠 1 − 𝑆 𝑠 S 𝑠

(b) Sample-Based Univariate SDT

Figure 12: Explanation Comparison for Univariate Soft Decision Trees. The surrogate model on the right is learned
by a sample-based distillation with a multi-distribution sampling strategy. The tree on the left is predicted by the I-Net.
The I-Net makes reasonable splits and achieves a significantly higher fidelity on the real data.

increase in the fidelity comes with a significant increase in the complexity, since each filter comprises 23 values that are
considered for calculating the probabilities of taking the left or right path. This makes standard SDTs much harder to
comprehend for humans. However, we can still get some insights if we inspect the filters thoroughly. In w1 of the SDT
predicted by the I-Net (Figure 13a), the value at index 6 and 18 have a considerably higher absolute value than the
remainder of the values, which makes them especially important for calculating the path probabilities. Accordingly,
a high value for the repayment status of the last month (negative filter value) and a low value for the amount of the
payment two months ago (positive filter value) strongly increases the probability of taking the left path, which results in
a payment default as prediction. Therefore, the surrogate model assumes that most clients that recently had a default
in their payment and recently had a low payment amount are likely to default again. However, this does not account
for all clients, since the filter comprises values 6= 0 for all 23 features. Accordingly, there exist data points where the
probability of taking the right path is higher, even if there is a high value for the repayment status of the last month and
a low value for the amount of the payment two months ago. This makes it increasingly hard to understand all aspects of

21

Explaining Neural Networks without Access to Training Data A PREPRINT

the explanation, which is usually the goal when global surrogate models are selected as an explanation method. The
SDT generated by the sample-based distillation (Figure 13b) is even more difficult to interpret. The filter w1 comprises
many values with a similarly high absolute value and therefore many features have a similar importance, which makes it
hard to formulate general explanations. It would be much easier to explain why there is a higher probability for taking a
specific path for a certain sample. However, this is not the purpose of a global explanation, but in this instance it would
be more reasonable to use a local explanation method. Furthermore, the surrogate model generated by a sample-based
distillation again only achieved a high fidelity (90%) on the sampled data, but a very low fidelity on the real data (25%).
Therefore, we can assume that the explanation is not able to give insights on the functioning of the neural network that
hold in a real world scenario.

𝒘𝟏 =

0.4	 − 0.2		0.2		1.5		0.4	 − 2.8	
−0.6		0.2	 − 0.5	 − 1.0		 − 1.1		0.3	
−0.3		0.5		 − 0.3	 − 0.9		1. 0		2.2		

3.1		0.3	 − 1.1	 − 0.1		1.6
𝑏" = −0.1

𝒘𝟒 =

0.3		0.5		0.8		1.1		1. 0		0.1		
1.1		0.4		0.1		0.9		0.6		0.2		
1.2		1.5				1.1		0.8		0.6		0.8		
1.6		0.4		0.9		0.6		1.3

𝑏$ = 0.2

𝒘𝟓 =

−0.3		0.5	 − 0.5		0. 0		0.1	 − 0.2		
0.7		0.3		0.1		0.2		0.3	 − 0.6		
0.1	 − 0.5				0.2		0.2		0.3		0.4		
0.1		0.2		0.1	 − 0.2		0.7

𝑏& = 0.3

𝒘𝟔 =

−1.0		 − 1.3	 − 0.4	 − 0.1		0.5	 − 1.1	
−1. 0	 − 0.3	 − 1.1	 − 1.1	 − 0.5	 − 1.3	
−1.4	 − 1.2			 − 0.4	 − 1.4		0.2	 − 0.2	
−0.1	 − 0.6	 − 1.1	 − 0.2	 − 0.6

𝑏(= −0.8

𝒘𝟕 =

0.2	 − 0.3		0.3		0.4		0.2	 − 0.3		
0.3		0.4		0.6	 − 0.2		0.3		0.7	

	0.1		0.2			 − 0.2		0.1	 − 0.6		0. 0	
−0.3		0.1		0.1		0.6	 − 0.1

𝑏* = 0

𝒘𝟑 =

0.1	 − 0. 0	 − 0.6		0.5	 − 0.3	 − 1.7	
−0.4		0.4	 − 0.3	 − 0.5	 − 0.5		0.5		
0. 0		0. 0			0.7	 − 0.8		0.4		0.9		
1.1		0.1	 − 0.1	 − 0.1		0.5

𝑏, = −0.1

𝒘𝟐 =

−0.7	 − 0.3	 − 0.5	 − 0.4	 − 1.3		0.1	
−0.9	 − 0.1	 − 1.0		0.0		 − 0.8	 − 0.5	
−0.3	 − 1.3			 − 0.2		0.3	 − 0.5	 − 1.0
1.0	 − 0.2	 − 0.5	 − 0.9		0.0		 − 1.0

𝑏. = −0.4

1 − 𝑆 𝒙𝒘 + 𝑏 𝑆 𝒙𝒘 + 𝑏

𝑆 𝒙𝒘 + 𝑏 𝑆 𝒙𝒘 + 𝑏

𝑺 𝒙𝒘 + 𝑏

1 − 𝑆 𝒙𝒘 + 𝑏 1 − 𝑆 𝒙𝒘 + 𝑏

1 − 𝑆 𝒙𝒘 + 𝑏

Fidelity Real Data: 83.3%

𝑺 𝒙𝒘 + 𝑏1 − 𝑆 𝒙𝒘 + 𝑏 𝑺 𝒙𝒘 + 𝑏1 − 𝑆 𝒙𝒘 + 𝑏 𝑺 𝒙𝒘 + 𝑏1 − 𝑺 𝒙𝒘 + 𝑏

Default Default Default Default No Default No Default Default No Default

𝝓𝟏 = [0.8,−0.4] 𝝓𝟐 = [1.3, −1.4] 𝝓𝟑 = [−0.2, −1.0] 𝝓𝟒 = [0.8, −0.7] 𝝓𝟓 = [−1.3, 1.4] 𝝓𝟔 = [−0.8, 0.7] 𝝓𝟕 = [0.1, −0.2] 𝝓𝟖 = [−0.3, 0.2]

(a) I-Net Standard SDT

𝒘𝟏 =

−0.1		0.1		0.2		0.5		0.2	 − 0.7		
0.2		0.4		0.3		0.2		0.1		0.1		
0.6		0.6				0.5		0.1		0.2		0.7		
0.7		0.5		0.7		0.5		0.2
𝑏" = 0.6

𝒘𝟒 =

−0.1		0. 0		0.0			0.0		0. 0		0. 0	
0. 0	 − 0.2		0. 0		0. 0		0. 0		0. 0	

0. 0	 − 0.1			 − 0.1		0.0		 − 0.1	 − 0.3	
−0.4	 − 0. 0	 − 0.6	 − 0.2	 − 0.3

𝑏$ = −0.2

𝒘𝟒 =

0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.1 	

𝑏% = 0

𝒘𝟔 =

−0.3	 − 0.5		0.2		0. 0	 − 1.3	 − 1.7		
1.2		0.3		1.1	 − 0.8	 − 0.5	 − 0.6

−1.2	 − 0.3			 − 0.3	 − 1.2		0.6		0.9	
	2.3		0.8		1.8		0.9		1.1

𝑏' = −0.2

𝒘𝟕 =

0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 	

𝑏) = 0

𝒘𝟐 =

−0.1	 − 0.1		0. 0		0. 0	 − 0.1	 − 0.2		
0. 0		0. 0		0.1		0. 0	 − 0.1	 − 0.2	
−0.2		0. 0		 − 0.1	 − 0.1		0.1		0.1		

0.2		0. 0		0.4		0.1		0.3

𝑏+ = −0.1

𝒘𝟑 =

−0.7	 − 0.5	 − 0.1		0.3	 − 0.6	 − 1.6		
0.2	 − 0.2		0. 0	 − 0.3	 − 0.6	 − 1. 0
−0.3	 − 0.3			 − 0.5	 − 0.5	 − 0.1		0.3		

0.8	 − 0.1		0.8		0.1	 − 0.6

𝑏- = −0.2

1 − 𝑆 𝒙𝒘 + 𝑏 𝑆 𝒙𝒘 + 𝑏

𝑆 𝒙𝒘 + 𝑏 𝑆 𝒙𝒘 + 𝑏

𝑆 𝒙𝒘 + 𝑏

1 − 𝑆 𝒙𝒘 + 𝑏 1 − 𝑆 𝒙𝒘 + 𝑏

1 − 𝑆 𝒙𝒘 + 𝑏

Fidelity Sampled Data: 90.0%
Fidelity Real Data: 25.0%

𝑆 𝒙𝒘 + 𝑏1 − 𝑆 𝒙𝒘 + 𝑏 𝑆 𝒙𝒘 + 𝑏1 − 𝑆 𝒙𝒘 + 𝑏 𝑆 𝒙𝒘 + 𝑏1 − 𝑆 𝒙𝒘 + 𝑏

Default Default Default No Default Default No Default No Default No Default

𝝓𝟏 = [1.3, −1.3] 𝝓𝟐 = [0.9, −0.9] 𝝓𝟑 = [0.4, −0.4] 𝝓𝟒 = [−0.3, 0.2] 𝝓𝟓 = [2.6, −2.6] 𝝓𝟔 = [−1.3, 1.3] 𝝓𝟕 = [−1.2, 1.2] 𝝓𝟖 = [0.0, 0.0]

(b) Sample-Based Standard SDT

Figure 13: Explanation Comparison for Standard Soft Decision Trees. The surrogate model on the right is learned
by a sample-based distillation with a multi-distribution sampling strategy. The tree on the left is predicted by the I-Net.
The I-Net makes reasonable splits and achieves a significantly higher fidelity on the real data.

D Dataset Size for Sample-Based Distillation

Selecting an appropriate number of data points to sample when using a sampling strategy to generate the query data
is very crucial. However, with an increasing number of samples, the runtime also increases significantly. Figure 8
shows the mean performance of a sample-based distillation using standard DTs on the real-world datasets in Table 10
for an increasing number of sample points. For each number of samples, we ran 10 independent trials, similar to the
experiments conducted in Section 4.2.2.

100 1000 10000 50000
Number of Samples

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

M
ea

n
Fid

el
ity

Multi-Distribution
Standard Uniform
Standard Normal

Figure 14: Dataset Size for Sample-Based Distillation. This figure shows the mean performance of sample-based
approaches on the real-world datasets in Table 10 when increasing the number of samples generated using the different
sampling strategies. We can see that there is no considerable performance increase when increasing the number of
samples above 10000.

22

Explaining Neural Networks without Access to Training Data A PREPRINT

References
Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444, 2015.
Xizhao Wang, Yanxia Zhao, and Farhad Pourpanah. Recent advances in deep learning, 2020.
Wojciech Samek, Grégoire Montavon, Andrea Vedaldi, Lars Kai Hansen, and Klaus-Robert Müller. Explainable AI:

interpreting, explaining and visualizing deep learning, volume 11700. Springer Nature, 2019.
Christoph Molnar. Interpretable Machine Learning. Lulu. com, 2020.
Nicholas Frosst and Geoffrey Hinton. Distilling a neural network into a soft decision tree. arXiv preprint

arXiv:1711.09784, 2017.
Raphael Gontijo Lopes, Stefano Fenu, and Thad Starner. Data-free knowledge distillation for deep neural networks.

arXiv preprint arXiv:1710.07535, 2017.
Kartikeya Bhardwaj, Naveen Suda, and Radu Marculescu. Dream distillation: A data-independent model compression

framework. arXiv preprint arXiv:1905.07072, 2019.
Gaurav Kumar Nayak, Konda Reddy Mopuri, Vaisakh Shaj, R Venkatesh Babu, and Anirban Chakraborty. Zero-shot

knowledge distillation in deep networks. arXiv preprint arXiv:1905.08114, 2019.
I-Cheng Yeh and Che-hui Lien. The comparisons of data mining techniques for the predictive accuracy of probability

of default of credit card clients. Expert systems with applications, 36(2):2473–2480, 2009.
Sascha Marton, Stefan Lüdtke, and Christian Bartelt. Explanations for neural networks by neural networks. Applied

Sciences, 12(3):980, 2022.
Lawrence M Leemis and Jacquelyn T McQueston. Univariate distribution relationships. The American Statistician, 62

(1):45–53, 2008.
Johnathan Mun. Understanding and choosing the right probability distributions. Advanced analytical models: Over 800

models and 300 applications from the basel II accord to Wall Street and beyond, pages 899–917, 2015.
Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. Classification and regression trees. CRC

press, 1984.
Haifeng Jin, Qingquan Song, and Xia Hu. Auto-keras: An efficient neural architecture search system. In Proceedings

of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 1946–1956.
ACM, 2019.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.ics.uci.edu/ml.
Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine learning. arXiv preprint

arXiv:1702.08608, 2017.
Zachary C Lipton. The mythos of model interpretability. Queue, 16(3):31–57, 2018.
Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In Proceedings of the 12th ACM

SIGKDD international conference on Knowledge discovery and data mining, pages 535–541, 2006.
Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv preprint

arXiv:1503.02531, 2015.
Tommaso Furlanello, Zachary C Lipton, Michael Tschannen, Laurent Itti, and Anima Anandkumar. Born again neural

networks. arXiv preprint arXiv:1805.04770, 2018.
Sarah Tan, Rich Caruana, Giles Hooker, Paul Koch, and Albert Gordo. Learning global additive explanations for neural

nets using model distillation. arXiv preprint arXiv:1801.08640, 2018.
Mark Craven and Jude W Shavlik. Extracting tree-structured representations of trained networks. In Advances in neural

information processing systems, pages 24–30, 1996.
Olcay Boz and Donald Hillman. Converting a trained neural network to a decision tree dectext-decision tree extractor.

Citeseer, 2000.
Quanshi Zhang, Yu Yang, Haotian Ma, and Ying Nian Wu. Interpreting cnns via decision trees. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 6261–6270, 2019.
R Krishnan, G Sivakumar, and P Bhattacharya. Extracting decision trees from trained neural networks. Pattern

recognition, 32(12), 1999.
Xuan Liu, Xiaoguang Wang, and Stan Matwin. Improving the interpretability of deep neural networks with knowledge

distillation. In 2018 IEEE International Conference on Data Mining Workshops (ICDMW), pages 905–912. IEEE,
2018.

23

http://archive.ics.uci.edu/ml

Explaining Neural Networks without Access to Training Data A PREPRINT

Ulf Johansson and Lars Niklasson. Evolving decision trees using oracle guides. In 2009 IEEE Symposium on
Computational Intelligence and Data Mining, pages 238–244. IEEE, 2009.

Tung D Nguyen, Kathryn E Kasmarik, and Hussein A Abbass. Towards interpretable deep neural networks: An exact
transformation to multi-class multivariate decision trees. arXiv, pages arXiv–2003, 2020.

J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.
J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.
Patrick M Murphy and Michael J Pazzani. Id2-of-3: Constructive induction of m-of-n concepts for discriminators in

decision trees. In Machine Learning Proceedings 1991, pages 183–187. Elsevier, 1991.
Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv preprint arXiv:1710.05941,

2017.
Kelwin Fernandes, Jaime S Cardoso, and Jessica Fernandes. Transfer learning with partial observability applied to

cervical cancer screening. In Iberian conference on pattern recognition and image analysis, pages 243–250. Springer,
2017.

Brett Lantz. Machine learning with R: expert techniques for predictive modeling. Packt publishing ltd, 2019.
Olvi L Mangasarian and William H Wolberg. Cancer diagnosis via linear programming. Technical report, University of

Wisconsin-Madison Department of Computer Sciences, 1990.
Robert Detrano, Andras Janosi, Walter Steinbrunn, Matthias Pfisterer, Johann-Jakob Schmid, Sarbjit Sandhu, Kern H

Guppy, Stella Lee, and Victor Froelicher. International application of a new probability algorithm for the diagnosis
of coronary artery disease. The American journal of cardiology, 64(5):304–310, 1989.

24

	1 Introduction
	2 I-Nets as a Sample-Free Approach to Global Model Interpretability
	2.1 Global Explanations for Neural Networks
	2.2 Reasonable Explanations
	2.3 Explanations for Neural Networks by Neural Networks

	3 Robust I-Nets for Decision Trees
	3.1 Improved Data Generation and Training Procedure
	3.1.1 Data Generation Method
	3.1.2 Adjusted Loss Function

	3.2 Function Families and I-Net Output Representation
	3.2.1 I-Nets for Standard Decision Trees
	3.2.2 I-Nets for Soft Decision Trees

	4 Evaluation
	4.1 Experimental Setup
	4.2 Experimental Results
	4.2.1 Visual Evaluation for Different Distributions
	4.2.2 Real World Datasets Performance Comparison
	4.2.3 Ablation Study
	4.2.4 Case Study: Explaining Neural Networks for Credit Card Default Prediction

	5 Related Work
	6 Conclusion and Future Work
	A Hyperparameter Summary
	B Real-World Dataset Specification
	C Case Study: Credit Card Default Prediction
	C.1 Credit Card Default Dataset Description
	C.2 Explaining Neural Networks using Soft Decision Trees

	D Dataset Size for Sample-Based Distillation

