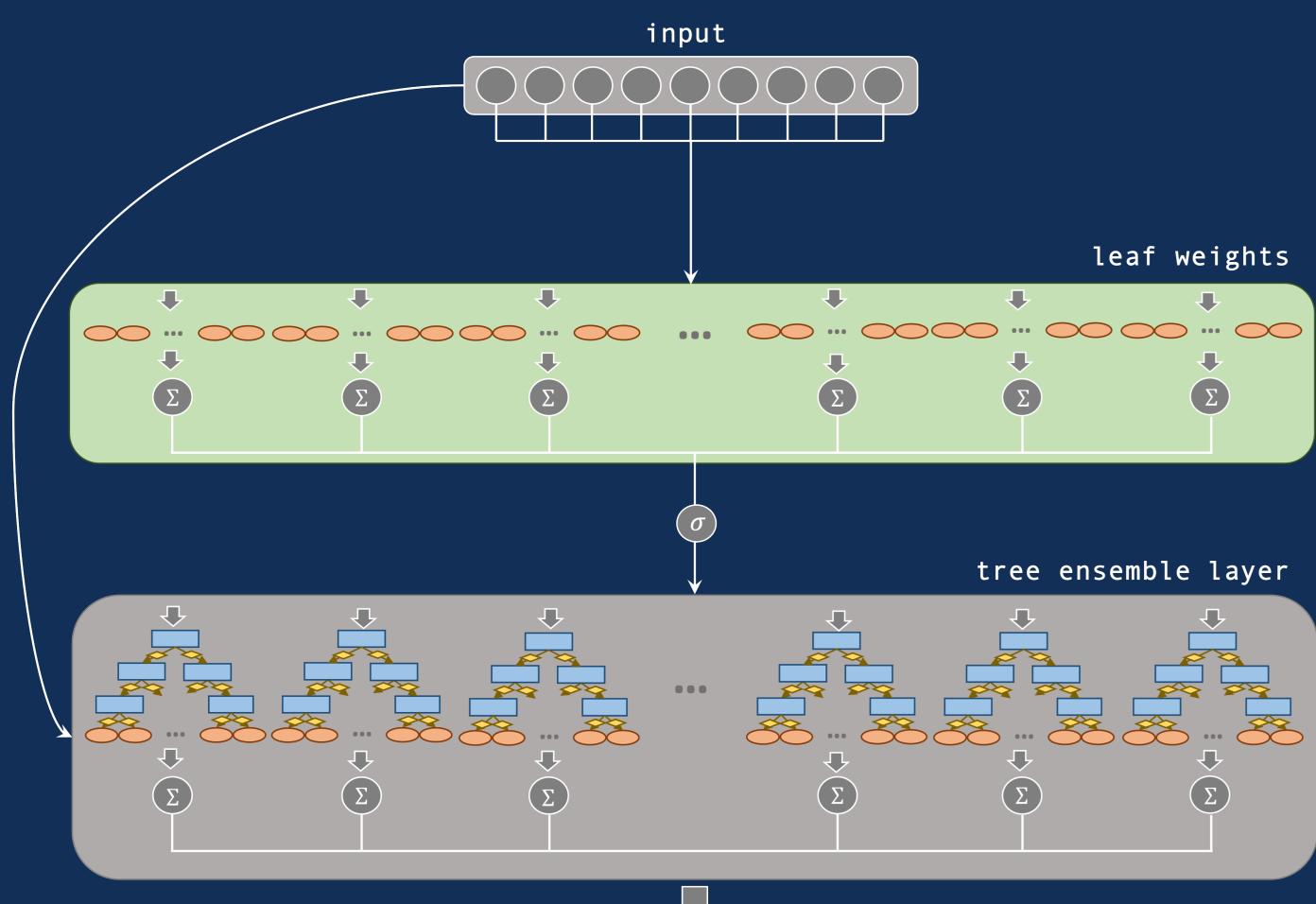
Combining a gradientbased optimization with the inductive bias of axis-aligned splits



https://github.com/s-marton

Motivation

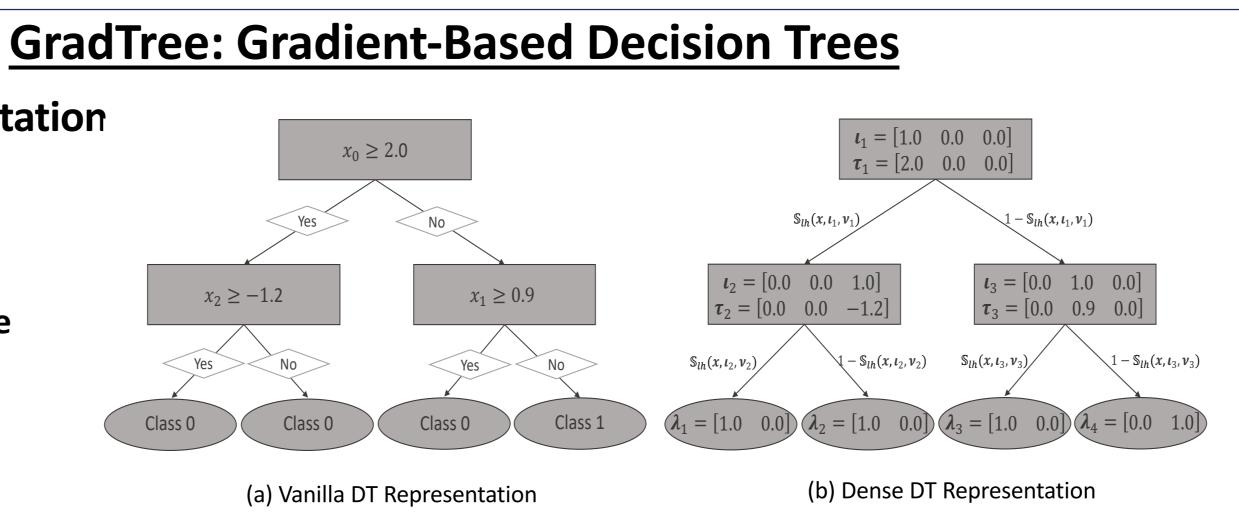
Tabular data is most frequent type of data:

- Comes with several challenges (heterogeneous data, class imbalance,...)
- Last "unconquered castle" for DL methods \rightarrow GBDTs are SOTA
- One reason is the inductive bias of axis-aligned splits: Tabular data typically has irregular target functions • DL methods favor overly smooth solutions \rightarrow <u>not well-suited for irregular target functions</u>
- Tree-based methods learn piecewise-constant functions \rightarrow well-suited for irregular target functions
- High need for gradient-based methods \rightarrow Flexibility

\rightarrow GRANDE = gradient-based optimization + inductive bias of axis-aligned splits

Dense DT Representation

• Relaxing the split indices and split thresholds \rightarrow Allow reasonable optimization with gradient descent



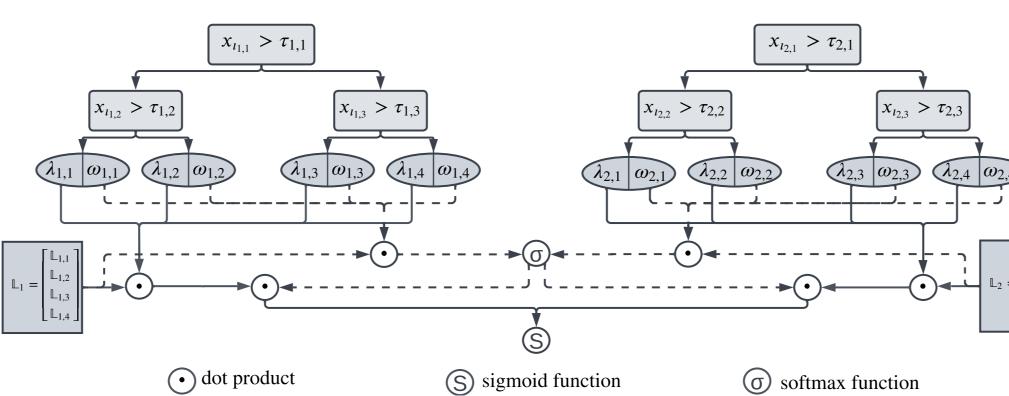
Straight-Through Operator for non-differentiable operations

(1) Hardmax function to enforce one-hot encoded split vectors \rightarrow univariate, axis-aligned DTs

(2) Discretization of the split function (round the sigmoid output) \rightarrow hard splits

GRANDE: Gradient-Based Decision Tree Ensembles

(1) Extend GradTree from individual trees to tree ensembles (2) Introduction of instance-wise estimator weights



(3) Novel differentiable splitting function: softsign (instead of sigmoid) \rightarrow Better gradient flow & more reasonable gradients (4) Regularization: feature subset, data subset, dropout,... \rightarrow Combine techniques of tree- and gradient-based methods

Sascha Marton sascha.marton@uni-mannheim.de University of Mannheim

GRANDE: <u>Gradient-Based</u> <u>Decision</u> Tree Ensembles for Tabular Data

parameters

one weight per estimator

the path for a given sample

 \rightarrow Weight is selected based on

- End-to-end learnable weight One weight per leaf instead of $(\lambda_{2,3} | \omega_{2,3}) (\lambda_{2,4} | \omega_{2,4})$ •) – L₂ =

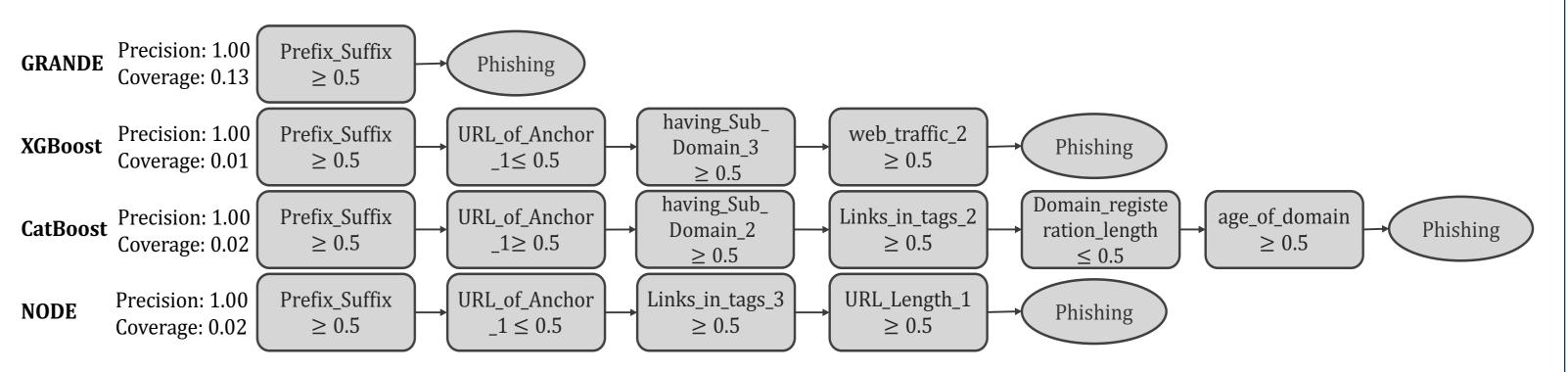
Jun.-Prof. Dr. Stefan Lüdtke stefan.luedtke@uni-rostock.de Institute for Visual and Analytic Computing

Case Study: PhishingWebsites Dataset

Task: identifying malicious websites based on meta- data and additional observable characteristics

- Large between simple and complex models
- Simple rules exist, for instance: Is a prefix of suffix added to the domain name? \rightarrow Yes: phishing (1)

\rightarrow GRANDE has learned a simple representation for a simple rule



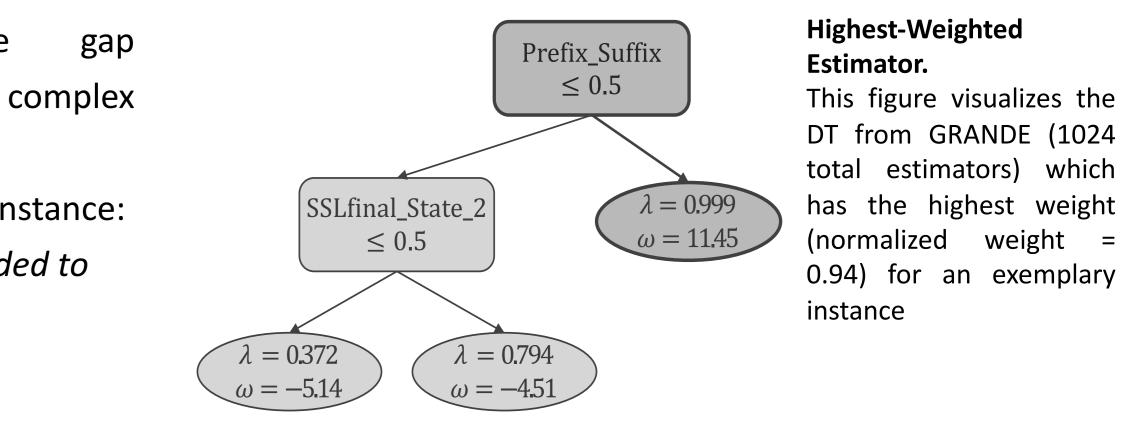
Anchors Explanations. This figure shows the local explanations generated by Anchors for the given instance. The explanation for GRANDE only comprises a single rule. In contrast, the corresponding explanations for the other methods have significantly higher complexity, which indicates that these methods are not able to learn simple representations within a complex model.

Benchmark Results

Performance Comparison. We report the test macro F1-score (mean for a 5-fold CV) with optimized parameters. The datasets are sorted based on the data size

	GRANDE	XGB	CatBoost	NODE
dresses-sales	0.612 (1)	0.581 (3)	0.588 (2)	0.564 (4)
climate-simulation-crashes	0.853 (1)	0.763 (4)	0.778 (3)	0.802 (2)
cylinder-bands	0.819 (1)	0.773 (3)	0.801 (2)	0.754 (4)
wdbc	0.975 (1)	0.953 (4)	0.963 (3)	0.966 (2)
ilpd	0.657 (1)	0.632 (3)	0.643 (2)	0.526 (4)
tokyo1	0.921 (3)	0.915 (4)	0.927 (1)	0.921 (2)
qsar-biodeg	0.854 (1)	0.853 (2)	0.844 (3)	0.836 (4)
ozone-level-8hr	0.726 (1)	0.688 (4)	0.721 (2)	0.703 (3)
madelon	0.803 (3)	0.833 (2)	0.861 (1)	0.571(4)
Bioresponse	0.794 (3)	0.799 (2)	0.801 (1)	0.780 (4)
wilt	0.936 (2)	0.911 (4)	0.919 (3)	0.937 (1)
churn	0.914 (2)	0.900 (3)	0.869 (4)	0.930 (1)
phoneme	0.846 (4)	0.872 (2)	0.876 (1)	0.862 (3)
SpeedDating	0.723 (1)	0.704 (4)	0.718 (2)	0.707 (3)
PhishingWebsites	0.969 (1)	0.968 (2)	0.965 (4)	0.968 (3)
Amazon_employee_access	0.665 (2)	0.621 (4)	0.671 (1)	0.649 (3)
nomao	0.958 (3)	0.965 (1)	0.964 (2)	0.956 (4)
adult	0.790 (4)	0.798 (1)	0.796 (2)	0.794 (3)
numerai28.6	0.519 (1)	0.518 (3)	0.519 (2)	0.503 (4)
Normalized Mean ↑	0.776 (1)	0.483 (3)	0.671 (2)	0.327 (4)
Mean Reciprocal Rank \uparrow	0.702 (1)	0.417 (3)	0.570 (2)	0.395 (4)

Dr. Christian Bartelt christian.bartelt@uni-mannheim.de University of Mannheim



By assessing the instance-wise weights for an exemplary instance with Prefix_Suffix = 1, we can observe that the class predicted by the ensemble is derived completely from the depicted tree

GRANDE in Action

Easy-to-use implementation: pip install GRANDE

```
from GRANDE import GRANDE
params = {
        'depth': 5,
        'n_estimators': 512,
        'loss': 'crossentropy',
args = {
    'objective': 'binary',
model_grande = GRANDE(params=params, args=args)
model_grande.fit(X_train=X_train,
                 y_train=y_train,
                 X_val=X_valid,
                 y_val=y_valid)
preds_grande = model_grande.predict(X_test)
```


Prof. Dr. Heiner Stuckenschmidt heiner.stuckenschmidt@uni-mannheim.de University of Mannheim