ACML 2023

Explaining Neural Networks without Access to Training Data

- Possible solution: Learn a surrogate model that has a high fidelity to the neural network
 - Requires access to the training data to achieve a high fidelity
- Frequently training data is not available e.g., due to privacy concerns

Example: Credit Card Default Prediction with Neural Networks

Methodology

Synthetic Data Generation

- Generating realistic data for training the set of neural networks is crucial ullet \rightarrow Allows generalization to real-world application
- Consider different, diverse distributions that are reasonable for numerous lacksquarereal-world phenomena

What is the advantage of I-Nets?

(b) I-Net Distillation

Sample-based approach to learn a surrogate model can't generate reasonable explanations without training data

General Procedure:

- → Training can be performed on synthetic data
- → During the training, we can access the training data of the model

I-Net Output Representation

Three separate types of output layers:

- 1. Feature Identifier Output
 - One softmax layer for each internal node
 - \rightarrow "Classification task" at each layer
- 2. Split Value Output
 - One neuron with sigmoid for each internal node
 - \rightarrow sigmoid activation can be used as variable values are in [0, 1]

3. Class Probability Output

- One neuron with sigmoid for each leaf node (for binary case)
- One softmax layer for each leaf node (for multi-class case)

1. Select an input data set $X = {x^{(j)}}_{i}^{M}$

- Usually training data used (I)
- Alternative: Randomly sample data points (II)
- 2. Query neural network using X to generate labels $y = \{y^{(j)}\}_{i}^{M}$
- 3. Train surrogate model (e.g. decision tree) on $\{x^{(j)}, y^{(j)}\}_{i}^{M}$

Data used for querying the model is very important \rightarrow Information that is not explicitly queried cannot be contained in the explanation!

Interpretation-Networks as Sample-Free Approach

- I-Nets as sample-free approach to generate global surrogate models
- General Procedure:

Results: Visual Comparison of Decision Boundaries

Without access to training data, surrogate models learned using samplebased approaches neglect relevant parts and focus on explaining irrelevant aspects

Results: Performance Comparison

Dataset	$\mathcal{I} ext{-Net}$	Multi-Distribution	Standard Uniform	Standard Normal
Titanic (n=9)	$\textbf{95.51} \pm \textbf{ 0.00}$	71.12 ± 17.16	86.07 ± 3.30	86.29 ± 7.75
Medical Insurance (n=9)	82.71 ± 0.00	88.12 ± 6.71	89.47 ± 4.19	$\textbf{90.75} \pm \textbf{ 8.83}$
Breast Cancer Wisconsin Original (n=9)	$\textbf{97.10} \pm \textbf{0.00}$	83.62 ± 13.09	39.42 ± 13.90	31.88 ± 0.00
Wisconsin Diagnostic Breast Cancer (n=10)	$\textbf{80.36} \pm \textbf{0.00}$	56.43 ± 17.65	37.86 ± 15.56	33.39 ± 5.42
Heart Disease (n=13)	73.33 ± 0.00	74.67 ± 9.45	$\textbf{85.67} \pm \textbf{ 5.97}$	80.33 ± 7.67
Cervical Cancer (n=15)	84.71 ± 0.00	65.41 ± 27.77	71.88 ± 9.64	60.82 ± 30.29
Loan House (n=16)	$100.00~\pm~~0.00$	77.05 ± 24.41	$\textbf{96.89} \pm \textbf{7.42}$	59.84 ± 33.84
Credit Card Default (n=23)	$\textbf{75.80} \pm \textbf{ 0.00}$	69.16 ± 17.58	74.76 ± 0.05	34.33 ± 20.31
Mean Fidelity	86.19	73.20	72.75	59.70

- 1. Train a set of neural networks on synthetic data and extract their learned parameters
- 2. Train a second neural network using the extracted parameters as input

No samples are required when generating explanations using the I-Net \rightarrow I-Nets utilizes the network parameters that implicitly contain all relevant information

The I-Net consistently outperforms a sample-based distillation if the training data is not accessible.

Sascha Marton

sascha.marton@uni-mannheim.de University of Mannheim

Jun.-Prof. Dr. Stefan Lüdtke stefan.luedtke@uni-rostock.de University of Rostock

Dr. Christian Bartelt

christian.bartelt@uni-mannheim.de

University of Mannheim

Andrej Tschalzev andrej.tschalzev@uni-mannheim.de University of Mannheim

Prof. Dr. Heiner Stuckenschmidt heiner.stuckenschmidt@uni-mannheim.de

University of Mannheim

