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SYMPOL: Symbolic Tree-Based On-Policy Reinforcement Learning

Interpretable Decision Tree Policies without Information Loss SYMPOL learns accurate DT policies

 SYMPOL is consistently among the best interpretable models
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(a) SYMPOL (ours) (b) State-Action DT (c) Discretized Soft DT

DT policies offer a good inductive bias for categorical environments
Figure 1: Information Loss in Tree-Based Reinforcement Learning on Pendulum. Existing

methods for symbolic, tree-based RL (see Figure 1b and 1c) suffer from severe information loss * DTs are not well-suited for modeling physical relationships
when converting the differentiable policy (high train reward) into the symbolic policy (low test
reward). Using SYMPOL (Figure 1a), we can directly optimize the symbolic policy with PPO and

— DTs are best suited for categorical environments ER DK LGS LG7 DS

therefore have no information loss during the application (high train and test reward). * due to their effective use of axis-aligned splits =~ SYMPOL (ours) ~ 0.964 0.959 0.951 0.953  0.939
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GradTree: Gradient-Based Decision Trees P P SA-DT (d=8)  0.845 0961 0.951 0799 0.954
. full-complexity model on categorical environments MLP 0.963 0.963 0.951 0.760 0.951
Dense DT Representat|on SDT 0.966 0.959 0.839 0.953 0.954
* Relaxing the split indices and split thresholds SYMPOL does not exhibit information loss
- Allow reasonable optimization with policy gradients e Existing methods for learning DT policies usually involve S
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DT policies learned with SYMPOL are small and interpretable
(a) Vanilla DT Representation (b) Dense DT Representation
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(2) Discretization of the split function (round the sigmoid output) = hard splits R .~ . .~
e
SYMPOL: SymbOIIC Tree-Based On-POIICV RL AL AL Figure 4: SYMPOL Policy for MountainCar. The main
.. . . ope . ope G oD rule encoded by this tree 1s that the car should accelerate to
Actor-Critic architecture EXpIOratlon Stablllty Gradient Stablllty aE Al the left, if its velocity is negative and to the right if it is pos-
, . . . itive, which essentially increases the speed of the car over
* Interpretable DT actor  dynamic rollout buffer size ¢ dynamic batch size time, making it possible to reach the goal at the top of the
. _ Figure 9: SYMPOL Policy. The agent has learned hill. The magnitude of the acceleration is mainly determined
* Full-complexity critic —> Exploration in early —> fast convergence early to avoid lava and walls, as well as identifying by the current position, reducing the cost of the actions.
and walk into the goal.
- capture complexity without =2 stability in later iterations — gradient stability later on Technical contributions are relevant to performance
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* Favor dynamic adjustments with o =1 log, (nﬁnal> —> supports intuitive justifications Normalized Mear
of tree architecture [e———— for our modifications Figure 5: Ablation Study. We report the mean normalized
T Global Timestep performance over all control environments.
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