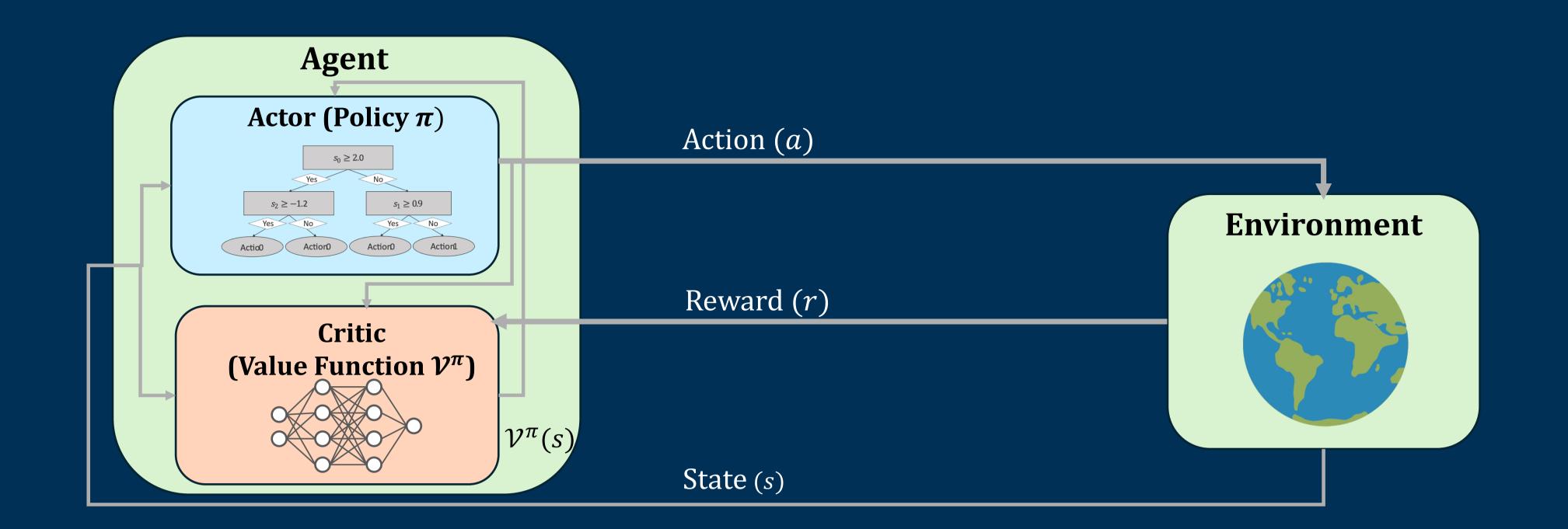
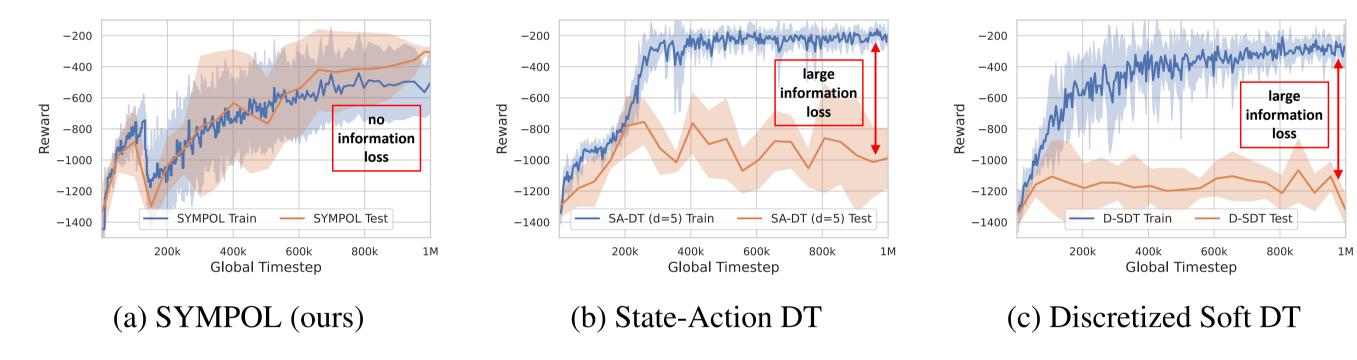
We can learn interpretable Decision Trees with Policy Gradients!



SYMPOL: Symbolic Tree-Based On-Policy Reinforcement Learning

Interpretable Decision Tree Policies without Information Loss



SYMPOL learns accurate DT policies

- SYMPOL is consistently among the best interpretable models
- Significantly higher rewards on several **Environments (LL and PD-C)**
- SYMPOL is competitive to full-complexity

models on most environments

	CP	AB	LL	MC-C	PD-C
SYMPOL (ours)	500	- 80	- 57	94	- 323
D-SDT	128	-205	-221	-10	-1343
SA-DT $(d=5)$	446	-97	-197	97	-1251
SA-DT (d=8)	476	- 75	-150	96	- 854
MLP	500	- 72	241	95	- 191
SDT	500	- 77	-124	- 4	- 310

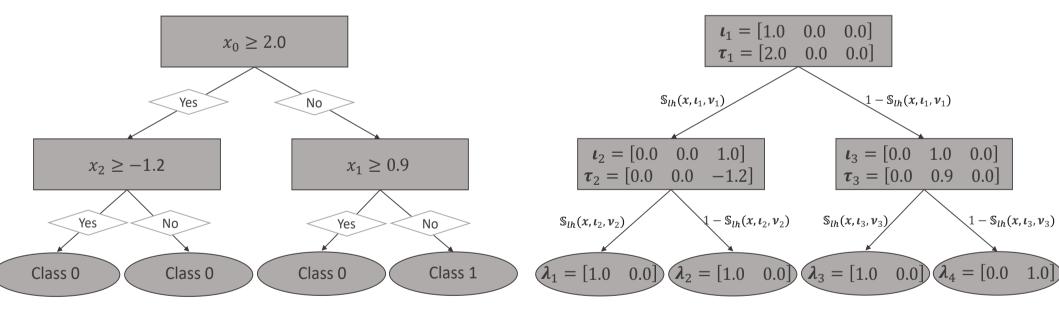
DT policies offer a good inductive bias for categorical environments

Figure 1: Information Loss in Tree-Based Reinforcement Learning on Pendulum. Existing methods for symbolic, tree-based RL (see Figure 1b and 1c) suffer from severe information loss when converting the differentiable policy (high train reward) into the symbolic policy (low test reward). Using SYMPOL (Figure 1a), we can directly optimize the symbolic policy with PPO and therefore have no information loss during the application (high train and test reward).

GradTree: Gradient-Based Decision Trees

Dense DT Representation

• Relaxing the split indices and split thresholds \rightarrow Allow reasonable optimization with policy gradients



(a) Vanilla DT Representation

(b) Dense DT Representation

Straight-Through Operator for non-differentiable operations

(1) Hardmax function to enforce one-hot encoded split vectors \rightarrow univariate, axis-aligned DTs (2) Discretization of the split function (round the sigmoid output) \rightarrow hard splits

SYMPOL: Symbolic Tree-Based On-Policy RL **Gradient Stability Exploration Stability Actor-Critic architecture**

DTs are not well-suited for modeling physical relationships

 \rightarrow DTs are best suited for categorical environments

- due to their effective use of axis-aligned splits
- SYMPOL achieves comparable or superior results to
- full-complexity model on categorical environments

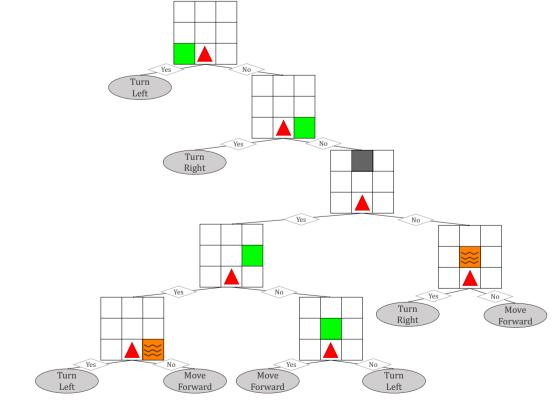
	E-R	DK	LG-5	LG-7	DS
SYMPOL (ours)	0.964	0.959	0.951	0.953	0.939
D-SDT	0.662	0.654	0.262	0.381	0.932
SA-DT $(d=5)$	0.583	0.958	0.951	0.458	0.952
SA-DT (d=8)	0.845	0.961	0.951	0.799	0.954
MLP	0.963	0.963	0.951	0.760	0.951
SDT	0.966	0.959	0.839	0.953	0.954

SYMPOL does not exhibit information loss

- Existing methods for learning DT policies usually involve postprocessing to obtain the interpretable model.
 - \rightarrow mismatch between the optimized and interpreted policy
- SYMPOL directly optimizes a DT on-policy
 - \rightarrow learned policy remains consistent from training to inference

	Cohen's D↓
SYMPOL (ours)	-0.019
SA-DT $(d=5)$	3.449
SA-DT (d=8)	2.527
D-SDT	3.126
MLP	0.306
SDT	0.040

DT policies learned with SYMPOL are small and interpretable



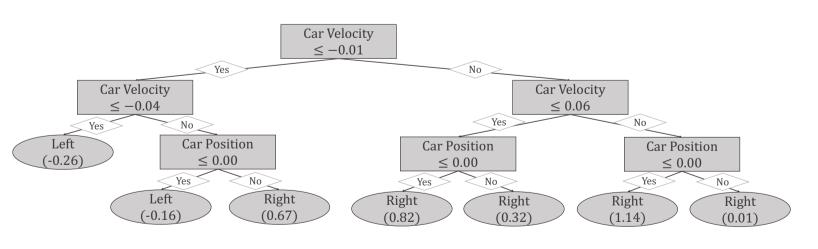


Figure 4: SYMPOL Policy for MountainCar. The main rule encoded by this tree is that the car should accelerate to the left, if its velocity is negative and to the right if it is positive, which essentially increases the speed of the car over time, making it possible to reach the goal at the top of the hill. The magnitude of the acceleration is mainly determined by the current position, reducing the cost of the actions.

- Interpretable DT actor
- Full-complexity critic
- \rightarrow capture complexity without

sacrificing interpretability

Weight Decay

Favor dynamic adjustments of tree architecture

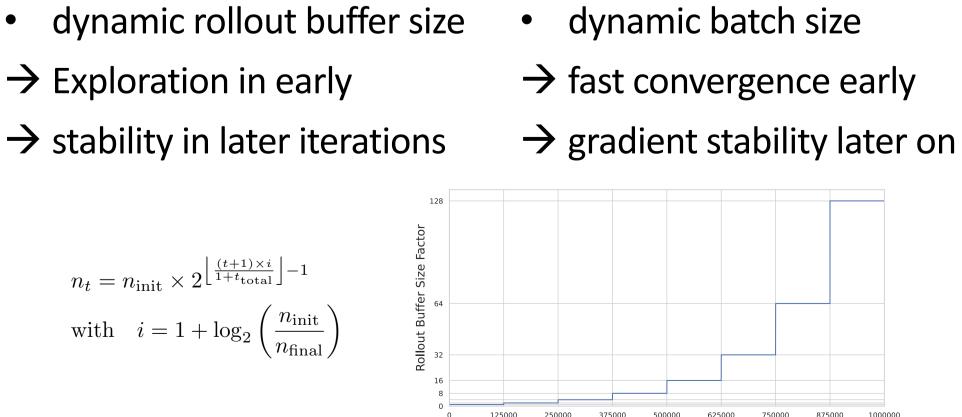


Figure 9: SYMPOL Policy. The agent has learned to avoid lava and walls, as well as identifying and walk into the goal.

Technical contributions are relevant to performance

Each component substantially contributes ullet

to the overall performance

 \rightarrow supports intuitive justifications

for our modifications

w/o separate architecture w/o dynamic rollout w/o batch size adjustment w/o adam

Figure 5: Ablation Study. We report the mean normalized performance over all control environments.

Sascha Marton

sascha.marton@uni-mannheim.de University of Mannheim

Tim Grams

tim.nico.grams@uni-mannheim.de University of Mannheim

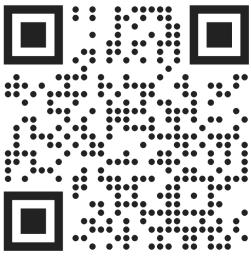
Florian Vogt forian.vogt@uni-mannheim.de University of Mannheim

Global Timester

Dr. Christian Bartelt christian.bartelt@uni-mannheim.de University of Mannheim

Jun.-Prof. Dr. Stefan Lüdtke

stefan.luedtke@uni-rostock.de Institute for Visual and Analytic Computing



https://github.com/ s-marton/SYMPOL