Talks and presentations

GRANDE: Gradient-Based Decision Tree Ensembles for Tabular Data

May 08, 2024

Talk, Messe Wien Exhibition und Congress Center, Vienna, Austria

Despite the success of deep learning for text and image data, tree-based ensemble models are still state-of-the-art for machine learning with heterogeneous tabular data. However, there is a significant need for tabular-specific gradient-based methods due to their high flexibility. In this paper, we propose GRANDE, GRAdieNt-based Decision tree Ensembles, a novel approach for learning hard, axis-aligned decision tree ensembles using end-to-end gradient descent. GRANDE is based on a dense representation of tree ensembles, which affords to use backpropagation with a straight-through operator to jointly optimize all model parameters. Our method combines axis-aligned splits, which is a useful inductive bias for tabular data, with the flexibility of gradient-based optimization. Furthermore, we introduce an advanced instance-wise weighting that facilitates learning representations for both, simple and complex relations, within a single model. We conducted an extensive evaluation on a predefined benchmark with 19 classification datasets and demonstrate that our method outperforms existing gradient-boosting and deep learning frameworks on most datasets. The method is available under: https://github.com/s-marton/GRANDE

Explaining neural networks without access to training data

November 14, 2023

Talk, Acıbadem University Conference Center, Istanbul, Turkey

We consider generating explanations for neural networks in cases where the network’s training data is not accessible, for instance due to privacy or safety issues. Recently, Interpretation Nets (I-Nets) have been proposed as a sample-free approach to post-hoc, global model interpretability that does not require access to training data. They formulate interpretation as a machine learning task that maps network representations (parameters) to a representation of an interpretable function. In this paper, we extend the I-Net framework to the cases of standard and soft decision trees as surrogate models. We propose a suitable decision tree representation and design of the corresponding I-Net output layers. Furthermore, we make I-Nets applicable to real-world tasks by considering more realistic distributions when generating the I-Net’s training data. We empirically evaluate our approach against traditional global, post-hoc interpretability approaches and show that it achieves superior results when the training data is not accessible.